This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqneltri.1 | ⊢ 𝐴 = 𝐵 | |
| eqneltri.2 | ⊢ ¬ 𝐵 ∈ 𝐶 | ||
| Assertion | eqneltri | ⊢ ¬ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltri.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | eqneltri.2 | ⊢ ¬ 𝐵 ∈ 𝐶 | |
| 3 | 1 | eleq1i | ⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) |
| 4 | 2 3 | mtbir | ⊢ ¬ 𝐴 ∈ 𝐶 |