This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvco4i.a | ⊢ ∅ = ( 𝐹 ‘ ∅ ) | |
| fvco4i.b | ⊢ Fun 𝐺 | ||
| Assertion | fvco4i | ⊢ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco4i.a | ⊢ ∅ = ( 𝐹 ‘ ∅ ) | |
| 2 | fvco4i.b | ⊢ Fun 𝐺 | |
| 3 | funfn | ⊢ ( Fun 𝐺 ↔ 𝐺 Fn dom 𝐺 ) | |
| 4 | 2 3 | mpbi | ⊢ 𝐺 Fn dom 𝐺 |
| 5 | fvco2 | ⊢ ( ( 𝐺 Fn dom 𝐺 ∧ 𝑋 ∈ dom 𝐺 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝑋 ∈ dom 𝐺 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 7 | dmcoss | ⊢ dom ( 𝐹 ∘ 𝐺 ) ⊆ dom 𝐺 | |
| 8 | 7 | sseli | ⊢ ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) → 𝑋 ∈ dom 𝐺 ) |
| 9 | ndmfv | ⊢ ( ¬ 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ∅ ) | |
| 10 | 8 9 | nsyl5 | ⊢ ( ¬ 𝑋 ∈ dom 𝐺 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ∅ ) |
| 11 | ndmfv | ⊢ ( ¬ 𝑋 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑋 ) = ∅ ) | |
| 12 | 11 | fveq2d | ⊢ ( ¬ 𝑋 ∈ dom 𝐺 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ∅ ) ) |
| 13 | 1 10 12 | 3eqtr4a | ⊢ ( ¬ 𝑋 ∈ dom 𝐺 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 14 | 6 13 | pm2.61i | ⊢ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) |