This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordering of the Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znle2.y | |- Y = ( Z/nZ ` N ) |
|
| znle2.f | |- F = ( ( ZRHom ` Y ) |` W ) |
||
| znle2.w | |- W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
||
| znle2.l | |- .<_ = ( le ` Y ) |
||
| Assertion | znle2 | |- ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znle2.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | znle2.f | |- F = ( ( ZRHom ` Y ) |` W ) |
|
| 3 | znle2.w | |- W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
|
| 4 | znle2.l | |- .<_ = ( le ` Y ) |
|
| 5 | eqid | |- ( RSpan ` ZZring ) = ( RSpan ` ZZring ) |
|
| 6 | eqid | |- ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
|
| 7 | eqid | |- ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) = ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) |
|
| 8 | 5 6 1 7 3 4 | znle | |- ( N e. NN0 -> .<_ = ( ( ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) o. <_ ) o. `' ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) ) ) |
| 9 | 5 6 1 | znzrh | |- ( N e. NN0 -> ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( ZRHom ` Y ) ) |
| 10 | 9 | reseq1d | |- ( N e. NN0 -> ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) = ( ( ZRHom ` Y ) |` W ) ) |
| 11 | 10 2 | eqtr4di | |- ( N e. NN0 -> ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) = F ) |
| 12 | 11 | coeq1d | |- ( N e. NN0 -> ( ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) o. <_ ) = ( F o. <_ ) ) |
| 13 | 11 | cnveqd | |- ( N e. NN0 -> `' ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) = `' F ) |
| 14 | 12 13 | coeq12d | |- ( N e. NN0 -> ( ( ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) o. <_ ) o. `' ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) ) = ( ( F o. <_ ) o. `' F ) ) |
| 15 | 8 14 | eqtrd | |- ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) |