This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ZZ . (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsrzring | |- || = ( ||r ` ZZring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( x e. ZZ /\ y e. ZZ ) -> x e. ZZ ) |
|
| 2 | 1 | anim1i | |- ( ( ( x e. ZZ /\ y e. ZZ ) /\ E. z e. ZZ ( z x. x ) = y ) -> ( x e. ZZ /\ E. z e. ZZ ( z x. x ) = y ) ) |
| 3 | simpl | |- ( ( x e. ZZ /\ E. z e. ZZ ( z x. x ) = y ) -> x e. ZZ ) |
|
| 4 | zmulcl | |- ( ( z e. ZZ /\ x e. ZZ ) -> ( z x. x ) e. ZZ ) |
|
| 5 | 4 | ancoms | |- ( ( x e. ZZ /\ z e. ZZ ) -> ( z x. x ) e. ZZ ) |
| 6 | eleq1 | |- ( ( z x. x ) = y -> ( ( z x. x ) e. ZZ <-> y e. ZZ ) ) |
|
| 7 | 5 6 | syl5ibcom | |- ( ( x e. ZZ /\ z e. ZZ ) -> ( ( z x. x ) = y -> y e. ZZ ) ) |
| 8 | 7 | rexlimdva | |- ( x e. ZZ -> ( E. z e. ZZ ( z x. x ) = y -> y e. ZZ ) ) |
| 9 | 8 | imp | |- ( ( x e. ZZ /\ E. z e. ZZ ( z x. x ) = y ) -> y e. ZZ ) |
| 10 | simpr | |- ( ( x e. ZZ /\ E. z e. ZZ ( z x. x ) = y ) -> E. z e. ZZ ( z x. x ) = y ) |
|
| 11 | 3 9 10 | jca31 | |- ( ( x e. ZZ /\ E. z e. ZZ ( z x. x ) = y ) -> ( ( x e. ZZ /\ y e. ZZ ) /\ E. z e. ZZ ( z x. x ) = y ) ) |
| 12 | 2 11 | impbii | |- ( ( ( x e. ZZ /\ y e. ZZ ) /\ E. z e. ZZ ( z x. x ) = y ) <-> ( x e. ZZ /\ E. z e. ZZ ( z x. x ) = y ) ) |
| 13 | 12 | opabbii | |- { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. z e. ZZ ( z x. x ) = y ) } = { <. x , y >. | ( x e. ZZ /\ E. z e. ZZ ( z x. x ) = y ) } |
| 14 | df-dvds | |- || = { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. z e. ZZ ( z x. x ) = y ) } |
|
| 15 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 16 | eqid | |- ( ||r ` ZZring ) = ( ||r ` ZZring ) |
|
| 17 | zringmulr | |- x. = ( .r ` ZZring ) |
|
| 18 | 15 16 17 | dvdsrval | |- ( ||r ` ZZring ) = { <. x , y >. | ( x e. ZZ /\ E. z e. ZZ ( z x. x ) = y ) } |
| 19 | 13 14 18 | 3eqtr4i | |- || = ( ||r ` ZZring ) |