This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | |- P = ( LPIdeal ` R ) |
|
| lpi0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | lpi0 | |- ( R e. Ring -> { .0. } e. P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | |- P = ( LPIdeal ` R ) |
|
| 2 | lpi0.z | |- .0. = ( 0g ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 2 | ring0cl | |- ( R e. Ring -> .0. e. ( Base ` R ) ) |
| 5 | eqid | |- ( RSpan ` R ) = ( RSpan ` R ) |
|
| 6 | 5 2 | rsp0 | |- ( R e. Ring -> ( ( RSpan ` R ) ` { .0. } ) = { .0. } ) |
| 7 | 6 | eqcomd | |- ( R e. Ring -> { .0. } = ( ( RSpan ` R ) ` { .0. } ) ) |
| 8 | sneq | |- ( g = .0. -> { g } = { .0. } ) |
|
| 9 | 8 | fveq2d | |- ( g = .0. -> ( ( RSpan ` R ) ` { g } ) = ( ( RSpan ` R ) ` { .0. } ) ) |
| 10 | 9 | rspceeqv | |- ( ( .0. e. ( Base ` R ) /\ { .0. } = ( ( RSpan ` R ) ` { .0. } ) ) -> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) |
| 11 | 4 7 10 | syl2anc | |- ( R e. Ring -> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) |
| 12 | 1 5 3 | islpidl | |- ( R e. Ring -> ( { .0. } e. P <-> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) ) |
| 13 | 11 12 | mpbird | |- ( R e. Ring -> { .0. } e. P ) |