This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringndrg | |- ZZring e/ DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ne2 | |- 1 =/= 2 |
|
| 2 | 1 | nesymi | |- -. 2 = 1 |
| 3 | 2re | |- 2 e. RR |
|
| 4 | 0le2 | |- 0 <_ 2 |
|
| 5 | absid | |- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
|
| 6 | 3 4 5 | mp2an | |- ( abs ` 2 ) = 2 |
| 7 | 6 | eqeq1i | |- ( ( abs ` 2 ) = 1 <-> 2 = 1 ) |
| 8 | 2 7 | mtbir | |- -. ( abs ` 2 ) = 1 |
| 9 | 8 | intnan | |- -. ( 2 e. ZZ /\ ( abs ` 2 ) = 1 ) |
| 10 | zringunit | |- ( 2 e. ( Unit ` ZZring ) <-> ( 2 e. ZZ /\ ( abs ` 2 ) = 1 ) ) |
|
| 11 | 9 10 | mtbir | |- -. 2 e. ( Unit ` ZZring ) |
| 12 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 13 | eqid | |- ( Unit ` ZZring ) = ( Unit ` ZZring ) |
|
| 14 | zring0 | |- 0 = ( 0g ` ZZring ) |
|
| 15 | 12 13 14 | isdrng | |- ( ZZring e. DivRing <-> ( ZZring e. Ring /\ ( Unit ` ZZring ) = ( ZZ \ { 0 } ) ) ) |
| 16 | 2z | |- 2 e. ZZ |
|
| 17 | 2ne0 | |- 2 =/= 0 |
|
| 18 | eldifsn | |- ( 2 e. ( ZZ \ { 0 } ) <-> ( 2 e. ZZ /\ 2 =/= 0 ) ) |
|
| 19 | 16 17 18 | mpbir2an | |- 2 e. ( ZZ \ { 0 } ) |
| 20 | id | |- ( ( Unit ` ZZring ) = ( ZZ \ { 0 } ) -> ( Unit ` ZZring ) = ( ZZ \ { 0 } ) ) |
|
| 21 | 19 20 | eleqtrrid | |- ( ( Unit ` ZZring ) = ( ZZ \ { 0 } ) -> 2 e. ( Unit ` ZZring ) ) |
| 22 | 15 21 | simplbiim | |- ( ZZring e. DivRing -> 2 e. ( Unit ` ZZring ) ) |
| 23 | 11 22 | mto | |- -. ZZring e. DivRing |
| 24 | 23 | nelir | |- ZZring e/ DivRing |