This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of any class Y and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofipsgn.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| cofipsgn.s | |- S = ( pmSgn ` N ) |
||
| Assertion | cofipsgn | |- ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofipsgn.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | cofipsgn.s | |- S = ( pmSgn ` N ) |
|
| 3 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 4 | eqid | |- { p e. P | dom ( p \ _I ) e. Fin } = { p e. P | dom ( p \ _I ) e. Fin } |
|
| 5 | 3 1 4 2 | psgnfn | |- S Fn { p e. P | dom ( p \ _I ) e. Fin } |
| 6 | difeq1 | |- ( p = Q -> ( p \ _I ) = ( Q \ _I ) ) |
|
| 7 | 6 | dmeqd | |- ( p = Q -> dom ( p \ _I ) = dom ( Q \ _I ) ) |
| 8 | 7 | eleq1d | |- ( p = Q -> ( dom ( p \ _I ) e. Fin <-> dom ( Q \ _I ) e. Fin ) ) |
| 9 | simpr | |- ( ( N e. Fin /\ Q e. P ) -> Q e. P ) |
|
| 10 | 3 1 | sygbasnfpfi | |- ( ( N e. Fin /\ Q e. P ) -> dom ( Q \ _I ) e. Fin ) |
| 11 | 8 9 10 | elrabd | |- ( ( N e. Fin /\ Q e. P ) -> Q e. { p e. P | dom ( p \ _I ) e. Fin } ) |
| 12 | fvco2 | |- ( ( S Fn { p e. P | dom ( p \ _I ) e. Fin } /\ Q e. { p e. P | dom ( p \ _I ) e. Fin } ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |
|
| 13 | 5 11 12 | sylancr | |- ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |