This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
||
| zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
||
| Assertion | zorn2lem2 | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( y e. x -> ( F ` y ) R ( F ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | |- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
|
| 2 | zorn2lem.4 | |- C = { z e. A | A. g e. ran f g R z } |
|
| 3 | zorn2lem.5 | |- D = { z e. A | A. g e. ( F " x ) g R z } |
|
| 4 | 1 2 3 | zorn2lem1 | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) |
| 5 | breq2 | |- ( z = ( F ` x ) -> ( g R z <-> g R ( F ` x ) ) ) |
|
| 6 | 5 | ralbidv | |- ( z = ( F ` x ) -> ( A. g e. ( F " x ) g R z <-> A. g e. ( F " x ) g R ( F ` x ) ) ) |
| 7 | 6 3 | elrab2 | |- ( ( F ` x ) e. D <-> ( ( F ` x ) e. A /\ A. g e. ( F " x ) g R ( F ` x ) ) ) |
| 8 | 7 | simprbi | |- ( ( F ` x ) e. D -> A. g e. ( F " x ) g R ( F ` x ) ) |
| 9 | 4 8 | syl | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> A. g e. ( F " x ) g R ( F ` x ) ) |
| 10 | 1 | tfr1 | |- F Fn On |
| 11 | onss | |- ( x e. On -> x C_ On ) |
|
| 12 | fnfvima | |- ( ( F Fn On /\ x C_ On /\ y e. x ) -> ( F ` y ) e. ( F " x ) ) |
|
| 13 | 12 | 3expia | |- ( ( F Fn On /\ x C_ On ) -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) |
| 14 | 10 11 13 | sylancr | |- ( x e. On -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) |
| 15 | 14 | adantr | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) |
| 16 | breq1 | |- ( g = ( F ` y ) -> ( g R ( F ` x ) <-> ( F ` y ) R ( F ` x ) ) ) |
|
| 17 | 16 | rspccv | |- ( A. g e. ( F " x ) g R ( F ` x ) -> ( ( F ` y ) e. ( F " x ) -> ( F ` y ) R ( F ` x ) ) ) |
| 18 | 9 15 17 | sylsyld | |- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( y e. x -> ( F ` y ) R ( F ` x ) ) ) |