This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | |- B = ( Base ` G ) |
|
| iscyg.2 | |- .x. = ( .g ` G ) |
||
| Assertion | iscyg | |- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | |- B = ( Base ` G ) |
|
| 2 | iscyg.2 | |- .x. = ( .g ` G ) |
|
| 3 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 4 | 3 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = B ) |
| 5 | fveq2 | |- ( g = G -> ( .g ` g ) = ( .g ` G ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( g = G -> ( .g ` g ) = .x. ) |
| 7 | 6 | oveqd | |- ( g = G -> ( n ( .g ` g ) x ) = ( n .x. x ) ) |
| 8 | 7 | mpteq2dv | |- ( g = G -> ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( n e. ZZ |-> ( n .x. x ) ) ) |
| 9 | 8 | rneqd | |- ( g = G -> ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ran ( n e. ZZ |-> ( n .x. x ) ) ) |
| 10 | 9 4 | eqeq12d | |- ( g = G -> ( ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) <-> ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
| 11 | 4 10 | rexeqbidv | |- ( g = G -> ( E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) <-> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
| 12 | df-cyg | |- CycGrp = { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) } |
|
| 13 | 11 12 | elrab2 | |- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |