This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhval.l | |- L = ( ZRHom ` R ) |
|
| zrhval2.m | |- .x. = ( .g ` R ) |
||
| zrhval2.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | zrhval2 | |- ( R e. Ring -> L = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | |- L = ( ZRHom ` R ) |
|
| 2 | zrhval2.m | |- .x. = ( .g ` R ) |
|
| 3 | zrhval2.1 | |- .1. = ( 1r ` R ) |
|
| 4 | 1 | zrhval | |- L = U. ( ZZring RingHom R ) |
| 5 | eqid | |- ( n e. ZZ |-> ( n .x. .1. ) ) = ( n e. ZZ |-> ( n .x. .1. ) ) |
|
| 6 | 2 5 3 | mulgrhm2 | |- ( R e. Ring -> ( ZZring RingHom R ) = { ( n e. ZZ |-> ( n .x. .1. ) ) } ) |
| 7 | 6 | unieqd | |- ( R e. Ring -> U. ( ZZring RingHom R ) = U. { ( n e. ZZ |-> ( n .x. .1. ) ) } ) |
| 8 | zex | |- ZZ e. _V |
|
| 9 | 8 | mptex | |- ( n e. ZZ |-> ( n .x. .1. ) ) e. _V |
| 10 | 9 | unisn | |- U. { ( n e. ZZ |-> ( n .x. .1. ) ) } = ( n e. ZZ |-> ( n .x. .1. ) ) |
| 11 | 7 10 | eqtrdi | |- ( R e. Ring -> U. ( ZZring RingHom R ) = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
| 12 | 4 11 | eqtrid | |- ( R e. Ring -> L = ( n e. ZZ |-> ( n .x. .1. ) ) ) |