This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | znchr.y | |- Y = ( Z/nZ ` N ) |
|
| Assertion | znchr | |- ( N e. NN0 -> ( chr ` Y ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znchr.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | 1 | zncrng | |- ( N e. NN0 -> Y e. CRing ) |
| 3 | crngring | |- ( Y e. CRing -> Y e. Ring ) |
|
| 4 | 2 3 | syl | |- ( N e. NN0 -> Y e. Ring ) |
| 5 | nn0z | |- ( x e. NN0 -> x e. ZZ ) |
|
| 6 | eqid | |- ( chr ` Y ) = ( chr ` Y ) |
|
| 7 | eqid | |- ( ZRHom ` Y ) = ( ZRHom ` Y ) |
|
| 8 | eqid | |- ( 0g ` Y ) = ( 0g ` Y ) |
|
| 9 | 6 7 8 | chrdvds | |- ( ( Y e. Ring /\ x e. ZZ ) -> ( ( chr ` Y ) || x <-> ( ( ZRHom ` Y ) ` x ) = ( 0g ` Y ) ) ) |
| 10 | 4 5 9 | syl2an | |- ( ( N e. NN0 /\ x e. NN0 ) -> ( ( chr ` Y ) || x <-> ( ( ZRHom ` Y ) ` x ) = ( 0g ` Y ) ) ) |
| 11 | 1 7 8 | zndvds0 | |- ( ( N e. NN0 /\ x e. ZZ ) -> ( ( ( ZRHom ` Y ) ` x ) = ( 0g ` Y ) <-> N || x ) ) |
| 12 | 5 11 | sylan2 | |- ( ( N e. NN0 /\ x e. NN0 ) -> ( ( ( ZRHom ` Y ) ` x ) = ( 0g ` Y ) <-> N || x ) ) |
| 13 | 10 12 | bitrd | |- ( ( N e. NN0 /\ x e. NN0 ) -> ( ( chr ` Y ) || x <-> N || x ) ) |
| 14 | 13 | ralrimiva | |- ( N e. NN0 -> A. x e. NN0 ( ( chr ` Y ) || x <-> N || x ) ) |
| 15 | 6 | chrcl | |- ( Y e. Ring -> ( chr ` Y ) e. NN0 ) |
| 16 | 4 15 | syl | |- ( N e. NN0 -> ( chr ` Y ) e. NN0 ) |
| 17 | dvdsext | |- ( ( ( chr ` Y ) e. NN0 /\ N e. NN0 ) -> ( ( chr ` Y ) = N <-> A. x e. NN0 ( ( chr ` Y ) || x <-> N || x ) ) ) |
|
| 18 | 16 17 | mpancom | |- ( N e. NN0 -> ( ( chr ` Y ) = N <-> A. x e. NN0 ( ( chr ` Y ) || x <-> N || x ) ) ) |
| 19 | 14 18 | mpbird | |- ( N e. NN0 -> ( chr ` Y ) = N ) |