This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' relationship between and addition and subtraction. (Contributed by NM, 6-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leaddsub2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) <_ C <-> B <_ ( C - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | recn | |- ( B e. RR -> B e. CC ) |
|
| 3 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) = ( B + A ) ) |
| 6 | 5 | breq1d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) <_ C <-> ( B + A ) <_ C ) ) |
| 7 | leaddsub | |- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( ( B + A ) <_ C <-> B <_ ( C - A ) ) ) |
|
| 8 | 7 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B + A ) <_ C <-> B <_ ( C - A ) ) ) |
| 9 | 6 8 | bitrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) <_ C <-> B <_ ( C - A ) ) ) |