This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Replacement. Normally ph would have free variables x and y . Axiom 6 of Kunen p. 12. The Separation Scheme ax-sep cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep . (Contributed by NM, 10-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfrep6 | |- ( A. x e. z E! y ph -> E. w A. x e. z E. y e. w ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v | |- ( E. y ( x e. z /\ ph ) <-> ( x e. z /\ E. y ph ) ) |
|
| 2 | 1 | abbii | |- { x | E. y ( x e. z /\ ph ) } = { x | ( x e. z /\ E. y ph ) } |
| 3 | dmopab | |- dom { <. x , y >. | ( x e. z /\ ph ) } = { x | E. y ( x e. z /\ ph ) } |
|
| 4 | df-rab | |- { x e. z | E. y ph } = { x | ( x e. z /\ E. y ph ) } |
|
| 5 | 2 3 4 | 3eqtr4i | |- dom { <. x , y >. | ( x e. z /\ ph ) } = { x e. z | E. y ph } |
| 6 | euex | |- ( E! y ph -> E. y ph ) |
|
| 7 | 6 | ralimi | |- ( A. x e. z E! y ph -> A. x e. z E. y ph ) |
| 8 | rabid2 | |- ( z = { x e. z | E. y ph } <-> A. x e. z E. y ph ) |
|
| 9 | 7 8 | sylibr | |- ( A. x e. z E! y ph -> z = { x e. z | E. y ph } ) |
| 10 | 5 9 | eqtr4id | |- ( A. x e. z E! y ph -> dom { <. x , y >. | ( x e. z /\ ph ) } = z ) |
| 11 | vex | |- z e. _V |
|
| 12 | 10 11 | eqeltrdi | |- ( A. x e. z E! y ph -> dom { <. x , y >. | ( x e. z /\ ph ) } e. _V ) |
| 13 | eumo | |- ( E! y ph -> E* y ph ) |
|
| 14 | 13 | imim2i | |- ( ( x e. z -> E! y ph ) -> ( x e. z -> E* y ph ) ) |
| 15 | moanimv | |- ( E* y ( x e. z /\ ph ) <-> ( x e. z -> E* y ph ) ) |
|
| 16 | 14 15 | sylibr | |- ( ( x e. z -> E! y ph ) -> E* y ( x e. z /\ ph ) ) |
| 17 | 16 | alimi | |- ( A. x ( x e. z -> E! y ph ) -> A. x E* y ( x e. z /\ ph ) ) |
| 18 | df-ral | |- ( A. x e. z E! y ph <-> A. x ( x e. z -> E! y ph ) ) |
|
| 19 | funopab | |- ( Fun { <. x , y >. | ( x e. z /\ ph ) } <-> A. x E* y ( x e. z /\ ph ) ) |
|
| 20 | 17 18 19 | 3imtr4i | |- ( A. x e. z E! y ph -> Fun { <. x , y >. | ( x e. z /\ ph ) } ) |
| 21 | funrnex | |- ( dom { <. x , y >. | ( x e. z /\ ph ) } e. _V -> ( Fun { <. x , y >. | ( x e. z /\ ph ) } -> ran { <. x , y >. | ( x e. z /\ ph ) } e. _V ) ) |
|
| 22 | 12 20 21 | sylc | |- ( A. x e. z E! y ph -> ran { <. x , y >. | ( x e. z /\ ph ) } e. _V ) |
| 23 | nfra1 | |- F/ x A. x e. z E! y ph |
|
| 24 | 10 | eleq2d | |- ( A. x e. z E! y ph -> ( x e. dom { <. x , y >. | ( x e. z /\ ph ) } <-> x e. z ) ) |
| 25 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ( x e. z /\ ph ) } <-> ( x e. z /\ ph ) ) |
|
| 26 | vex | |- x e. _V |
|
| 27 | vex | |- y e. _V |
|
| 28 | 26 27 | opelrn | |- ( <. x , y >. e. { <. x , y >. | ( x e. z /\ ph ) } -> y e. ran { <. x , y >. | ( x e. z /\ ph ) } ) |
| 29 | 25 28 | sylbir | |- ( ( x e. z /\ ph ) -> y e. ran { <. x , y >. | ( x e. z /\ ph ) } ) |
| 30 | 29 | ex | |- ( x e. z -> ( ph -> y e. ran { <. x , y >. | ( x e. z /\ ph ) } ) ) |
| 31 | 30 | impac | |- ( ( x e. z /\ ph ) -> ( y e. ran { <. x , y >. | ( x e. z /\ ph ) } /\ ph ) ) |
| 32 | 31 | eximi | |- ( E. y ( x e. z /\ ph ) -> E. y ( y e. ran { <. x , y >. | ( x e. z /\ ph ) } /\ ph ) ) |
| 33 | 3 | eqabri | |- ( x e. dom { <. x , y >. | ( x e. z /\ ph ) } <-> E. y ( x e. z /\ ph ) ) |
| 34 | df-rex | |- ( E. y e. ran { <. x , y >. | ( x e. z /\ ph ) } ph <-> E. y ( y e. ran { <. x , y >. | ( x e. z /\ ph ) } /\ ph ) ) |
|
| 35 | 32 33 34 | 3imtr4i | |- ( x e. dom { <. x , y >. | ( x e. z /\ ph ) } -> E. y e. ran { <. x , y >. | ( x e. z /\ ph ) } ph ) |
| 36 | 24 35 | biimtrrdi | |- ( A. x e. z E! y ph -> ( x e. z -> E. y e. ran { <. x , y >. | ( x e. z /\ ph ) } ph ) ) |
| 37 | 23 36 | ralrimi | |- ( A. x e. z E! y ph -> A. x e. z E. y e. ran { <. x , y >. | ( x e. z /\ ph ) } ph ) |
| 38 | nfopab1 | |- F/_ x { <. x , y >. | ( x e. z /\ ph ) } |
|
| 39 | 38 | nfrn | |- F/_ x ran { <. x , y >. | ( x e. z /\ ph ) } |
| 40 | 39 | nfeq2 | |- F/ x w = ran { <. x , y >. | ( x e. z /\ ph ) } |
| 41 | nfcv | |- F/_ y w |
|
| 42 | nfopab2 | |- F/_ y { <. x , y >. | ( x e. z /\ ph ) } |
|
| 43 | 42 | nfrn | |- F/_ y ran { <. x , y >. | ( x e. z /\ ph ) } |
| 44 | 41 43 | rexeqf | |- ( w = ran { <. x , y >. | ( x e. z /\ ph ) } -> ( E. y e. w ph <-> E. y e. ran { <. x , y >. | ( x e. z /\ ph ) } ph ) ) |
| 45 | 40 44 | ralbid | |- ( w = ran { <. x , y >. | ( x e. z /\ ph ) } -> ( A. x e. z E. y e. w ph <-> A. x e. z E. y e. ran { <. x , y >. | ( x e. z /\ ph ) } ph ) ) |
| 46 | 22 37 45 | spcedv | |- ( A. x e. z E! y ph -> E. w A. x e. z E. y e. w ph ) |