This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Replacement. Normally ph would have free variables x and y . Axiom 6 of Kunen p. 12. The Separation Scheme ax-sep cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep . (Contributed by NM, 10-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfrep6 | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑤 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑧 ∧ ∃ 𝑦 𝜑 ) ) | |
| 2 | 1 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝑧 ∧ ∃ 𝑦 𝜑 ) } |
| 3 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } | |
| 4 | df-rab | ⊢ { 𝑥 ∈ 𝑧 ∣ ∃ 𝑦 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑧 ∧ ∃ 𝑦 𝜑 ) } | |
| 5 | 2 3 4 | 3eqtr4i | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } = { 𝑥 ∈ 𝑧 ∣ ∃ 𝑦 𝜑 } |
| 6 | euex | ⊢ ( ∃! 𝑦 𝜑 → ∃ 𝑦 𝜑 ) | |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 𝜑 ) |
| 8 | rabid2 | ⊢ ( 𝑧 = { 𝑥 ∈ 𝑧 ∣ ∃ 𝑦 𝜑 } ↔ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 𝜑 ) | |
| 9 | 7 8 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → 𝑧 = { 𝑥 ∈ 𝑧 ∣ ∃ 𝑦 𝜑 } ) |
| 10 | 5 9 | eqtr4id | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } = 𝑧 ) |
| 11 | vex | ⊢ 𝑧 ∈ V | |
| 12 | 10 11 | eqeltrdi | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ∈ V ) |
| 13 | eumo | ⊢ ( ∃! 𝑦 𝜑 → ∃* 𝑦 𝜑 ) | |
| 14 | 13 | imim2i | ⊢ ( ( 𝑥 ∈ 𝑧 → ∃! 𝑦 𝜑 ) → ( 𝑥 ∈ 𝑧 → ∃* 𝑦 𝜑 ) ) |
| 15 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑧 → ∃* 𝑦 𝜑 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( ( 𝑥 ∈ 𝑧 → ∃! 𝑦 𝜑 ) → ∃* 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
| 17 | 16 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → ∃! 𝑦 𝜑 ) → ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
| 18 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑧 → ∃! 𝑦 𝜑 ) ) | |
| 19 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) | |
| 20 | 17 18 19 | 3imtr4i | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ) |
| 21 | funrnex | ⊢ ( dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ∈ V → ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } → ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ∈ V ) ) | |
| 22 | 12 20 21 | sylc | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ∈ V ) |
| 23 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 | |
| 24 | 10 | eleq2d | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → ( 𝑥 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ↔ 𝑥 ∈ 𝑧 ) ) |
| 25 | opabidw | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) | |
| 26 | vex | ⊢ 𝑥 ∈ V | |
| 27 | vex | ⊢ 𝑦 ∈ V | |
| 28 | 26 27 | opelrn | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } → 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ) |
| 29 | 25 28 | sylbir | ⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) → 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ) |
| 30 | 29 | ex | ⊢ ( 𝑥 ∈ 𝑧 → ( 𝜑 → 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ) ) |
| 31 | 30 | impac | ⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) → ( 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ∧ 𝜑 ) ) |
| 32 | 31 | eximi | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) → ∃ 𝑦 ( 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ∧ 𝜑 ) ) |
| 33 | 3 | eqabri | ⊢ ( 𝑥 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
| 34 | df-rex | ⊢ ( ∃ 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } ∧ 𝜑 ) ) | |
| 35 | 32 33 34 | 3imtr4i | ⊢ ( 𝑥 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } → ∃ 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } 𝜑 ) |
| 36 | 24 35 | biimtrrdi | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → ( 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } 𝜑 ) ) |
| 37 | 23 36 | ralrimi | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } 𝜑 ) |
| 38 | nfopab1 | ⊢ Ⅎ 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } | |
| 39 | 38 | nfrn | ⊢ Ⅎ 𝑥 ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } |
| 40 | 39 | nfeq2 | ⊢ Ⅎ 𝑥 𝑤 = ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } |
| 41 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 42 | nfopab2 | ⊢ Ⅎ 𝑦 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } | |
| 43 | 42 | nfrn | ⊢ Ⅎ 𝑦 ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } |
| 44 | 41 43 | rexeqf | ⊢ ( 𝑤 = ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } → ( ∃ 𝑦 ∈ 𝑤 𝜑 ↔ ∃ 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } 𝜑 ) ) |
| 45 | 40 44 | ralbid | ⊢ ( 𝑤 = ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } → ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑤 𝜑 ↔ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) } 𝜑 ) ) |
| 46 | 22 37 45 | spcedv | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃! 𝑦 𝜑 → ∃ 𝑤 ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑤 𝜑 ) |