This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See rexeq for a version based on fewer axioms. (Contributed by NM, 9-Oct-2003) (Revised by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 9-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqf.1 | |- F/_ x A |
|
| raleqf.2 | |- F/_ x B |
||
| Assertion | rexeqf | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqf.1 | |- F/_ x A |
|
| 2 | raleqf.2 | |- F/_ x B |
|
| 3 | 1 2 | raleqf | |- ( A = B -> ( A. x e. A -. ph <-> A. x e. B -. ph ) ) |
| 4 | ralnex | |- ( A. x e. A -. ph <-> -. E. x e. A ph ) |
|
| 5 | ralnex | |- ( A. x e. B -. ph <-> -. E. x e. B ph ) |
|
| 6 | 3 4 5 | 3bitr3g | |- ( A = B -> ( -. E. x e. A ph <-> -. E. x e. B ph ) ) |
| 7 | 6 | con4bid | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) ) |