This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmphtr | |- ( ( J ~= K /\ K ~= L ) -> J ~= L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph | |- ( J ~= K <-> ( J Homeo K ) =/= (/) ) |
|
| 2 | hmph | |- ( K ~= L <-> ( K Homeo L ) =/= (/) ) |
|
| 3 | n0 | |- ( ( J Homeo K ) =/= (/) <-> E. f f e. ( J Homeo K ) ) |
|
| 4 | n0 | |- ( ( K Homeo L ) =/= (/) <-> E. g g e. ( K Homeo L ) ) |
|
| 5 | exdistrv | |- ( E. f E. g ( f e. ( J Homeo K ) /\ g e. ( K Homeo L ) ) <-> ( E. f f e. ( J Homeo K ) /\ E. g g e. ( K Homeo L ) ) ) |
|
| 6 | hmeoco | |- ( ( f e. ( J Homeo K ) /\ g e. ( K Homeo L ) ) -> ( g o. f ) e. ( J Homeo L ) ) |
|
| 7 | hmphi | |- ( ( g o. f ) e. ( J Homeo L ) -> J ~= L ) |
|
| 8 | 6 7 | syl | |- ( ( f e. ( J Homeo K ) /\ g e. ( K Homeo L ) ) -> J ~= L ) |
| 9 | 8 | exlimivv | |- ( E. f E. g ( f e. ( J Homeo K ) /\ g e. ( K Homeo L ) ) -> J ~= L ) |
| 10 | 5 9 | sylbir | |- ( ( E. f f e. ( J Homeo K ) /\ E. g g e. ( K Homeo L ) ) -> J ~= L ) |
| 11 | 3 4 10 | syl2anb | |- ( ( ( J Homeo K ) =/= (/) /\ ( K Homeo L ) =/= (/) ) -> J ~= L ) |
| 12 | 1 2 11 | syl2anb | |- ( ( J ~= K /\ K ~= L ) -> J ~= L ) |