This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ordering in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsle.t | |- T = ( R Xs. S ) |
|
| xpsle.x | |- X = ( Base ` R ) |
||
| xpsle.y | |- Y = ( Base ` S ) |
||
| xpsle.1 | |- ( ph -> R e. V ) |
||
| xpsle.2 | |- ( ph -> S e. W ) |
||
| xpsle.p | |- .<_ = ( le ` T ) |
||
| xpsle.m | |- M = ( le ` R ) |
||
| xpsle.n | |- N = ( le ` S ) |
||
| xpsle.3 | |- ( ph -> A e. X ) |
||
| xpsle.4 | |- ( ph -> B e. Y ) |
||
| xpsle.5 | |- ( ph -> C e. X ) |
||
| xpsle.6 | |- ( ph -> D e. Y ) |
||
| Assertion | xpsle | |- ( ph -> ( <. A , B >. .<_ <. C , D >. <-> ( A M C /\ B N D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsle.t | |- T = ( R Xs. S ) |
|
| 2 | xpsle.x | |- X = ( Base ` R ) |
|
| 3 | xpsle.y | |- Y = ( Base ` S ) |
|
| 4 | xpsle.1 | |- ( ph -> R e. V ) |
|
| 5 | xpsle.2 | |- ( ph -> S e. W ) |
|
| 6 | xpsle.p | |- .<_ = ( le ` T ) |
|
| 7 | xpsle.m | |- M = ( le ` R ) |
|
| 8 | xpsle.n | |- N = ( le ` S ) |
|
| 9 | xpsle.3 | |- ( ph -> A e. X ) |
|
| 10 | xpsle.4 | |- ( ph -> B e. Y ) |
|
| 11 | xpsle.5 | |- ( ph -> C e. X ) |
|
| 12 | xpsle.6 | |- ( ph -> D e. Y ) |
|
| 13 | df-ov | |- ( A ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) B ) = ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) |
|
| 14 | eqid | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 15 | 14 | xpsfval | |- ( ( A e. X /\ B e. Y ) -> ( A ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) B ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 16 | 9 10 15 | syl2anc | |- ( ph -> ( A ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) B ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 17 | 13 16 | eqtr3id | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 18 | 9 10 | opelxpd | |- ( ph -> <. A , B >. e. ( X X. Y ) ) |
| 19 | 14 | xpsff1o2 | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 20 | f1of | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) --> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
|
| 21 | 19 20 | ax-mp | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) --> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 22 | 21 | ffvelcdmi | |- ( <. A , B >. e. ( X X. Y ) -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 23 | 18 22 | syl | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 24 | 17 23 | eqeltrrd | |- ( ph -> { <. (/) , A >. , <. 1o , B >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 25 | df-ov | |- ( C ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) D ) = ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) |
|
| 26 | 14 | xpsfval | |- ( ( C e. X /\ D e. Y ) -> ( C ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) D ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 27 | 11 12 26 | syl2anc | |- ( ph -> ( C ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) D ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 28 | 25 27 | eqtr3id | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 29 | 11 12 | opelxpd | |- ( ph -> <. C , D >. e. ( X X. Y ) ) |
| 30 | 21 | ffvelcdmi | |- ( <. C , D >. e. ( X X. Y ) -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 31 | 29 30 | syl | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 32 | 28 31 | eqeltrrd | |- ( ph -> { <. (/) , C >. , <. 1o , D >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 33 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 34 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 35 | 1 2 3 4 5 14 33 34 | xpsval | |- ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 36 | 1 2 3 4 5 14 33 34 | xpsrnbas | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 37 | f1ocnv | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
|
| 38 | 19 37 | mp1i | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
| 39 | f1ofo | |- ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) |
|
| 40 | 38 39 | syl | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) |
| 41 | ovexd | |- ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
|
| 42 | eqid | |- ( le ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( le ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 43 | 38 | f1olecpbl | |- ( ( ph /\ ( a e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ b e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) /\ ( c e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ d e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) -> ( ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` a ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` c ) /\ ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` b ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` d ) ) -> ( a ( le ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) b <-> c ( le ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) d ) ) ) |
| 44 | 35 36 40 41 6 42 43 | imasleval | |- ( ( ph /\ { <. (/) , A >. , <. 1o , B >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ { <. (/) , C >. , <. 1o , D >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) .<_ ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) <-> { <. (/) , A >. , <. 1o , B >. } ( le ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) ) |
| 45 | 24 32 44 | mpd3an23 | |- ( ph -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) .<_ ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) <-> { <. (/) , A >. , <. 1o , B >. } ( le ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) ) |
| 46 | f1ocnvfv | |- ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ <. A , B >. e. ( X X. Y ) ) -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) ) |
|
| 47 | 19 18 46 | sylancr | |- ( ph -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) ) |
| 48 | 17 47 | mpd | |- ( ph -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) |
| 49 | f1ocnvfv | |- ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ <. C , D >. e. ( X X. Y ) ) -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) ) |
|
| 50 | 19 29 49 | sylancr | |- ( ph -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) ) |
| 51 | 28 50 | mpd | |- ( ph -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) |
| 52 | 48 51 | breq12d | |- ( ph -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) .<_ ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) <-> <. A , B >. .<_ <. C , D >. ) ) |
| 53 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 54 | fvexd | |- ( ph -> ( Scalar ` R ) e. _V ) |
|
| 55 | 2on | |- 2o e. On |
|
| 56 | 55 | a1i | |- ( ph -> 2o e. On ) |
| 57 | fnpr2o | |- ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
|
| 58 | 4 5 57 | syl2anc | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
| 59 | 24 36 | eleqtrd | |- ( ph -> { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 60 | 32 36 | eleqtrd | |- ( ph -> { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 61 | 34 53 54 56 58 59 60 42 | prdsleval | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ( le ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } <-> A. k e. 2o ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) |
| 62 | df2o3 | |- 2o = { (/) , 1o } |
|
| 63 | 62 | raleqi | |- ( A. k e. 2o ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) <-> A. k e. { (/) , 1o } ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) |
| 64 | 0ex | |- (/) e. _V |
|
| 65 | 1oex | |- 1o e. _V |
|
| 66 | fveq2 | |- ( k = (/) -> ( { <. (/) , A >. , <. 1o , B >. } ` k ) = ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ) |
|
| 67 | 2fveq3 | |- ( k = (/) -> ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ) |
|
| 68 | fveq2 | |- ( k = (/) -> ( { <. (/) , C >. , <. 1o , D >. } ` k ) = ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) |
|
| 69 | 66 67 68 | breq123d | |- ( k = (/) -> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) <-> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) ) |
| 70 | fveq2 | |- ( k = 1o -> ( { <. (/) , A >. , <. 1o , B >. } ` k ) = ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ) |
|
| 71 | 2fveq3 | |- ( k = 1o -> ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ) |
|
| 72 | fveq2 | |- ( k = 1o -> ( { <. (/) , C >. , <. 1o , D >. } ` k ) = ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) |
|
| 73 | 70 71 72 | breq123d | |- ( k = 1o -> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) <-> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) ) |
| 74 | 64 65 69 73 | ralpr | |- ( A. k e. { (/) , 1o } ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) <-> ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) /\ ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) ) |
| 75 | 63 74 | bitri | |- ( A. k e. 2o ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) <-> ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) /\ ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) ) |
| 76 | fvpr0o | |- ( A e. X -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) |
|
| 77 | 9 76 | syl | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) |
| 78 | fvpr0o | |- ( R e. V -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
|
| 79 | 4 78 | syl | |- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
| 80 | 79 | fveq2d | |- ( ph -> ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) = ( le ` R ) ) |
| 81 | 80 7 | eqtr4di | |- ( ph -> ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) = M ) |
| 82 | fvpr0o | |- ( C e. X -> ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) = C ) |
|
| 83 | 11 82 | syl | |- ( ph -> ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) = C ) |
| 84 | 77 81 83 | breq123d | |- ( ph -> ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) <-> A M C ) ) |
| 85 | fvpr1o | |- ( B e. Y -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) |
|
| 86 | 10 85 | syl | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) |
| 87 | fvpr1o | |- ( S e. W -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
|
| 88 | 5 87 | syl | |- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
| 89 | 88 | fveq2d | |- ( ph -> ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) = ( le ` S ) ) |
| 90 | 89 8 | eqtr4di | |- ( ph -> ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) = N ) |
| 91 | fvpr1o | |- ( D e. Y -> ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) = D ) |
|
| 92 | 12 91 | syl | |- ( ph -> ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) = D ) |
| 93 | 86 90 92 | breq123d | |- ( ph -> ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) <-> B N D ) ) |
| 94 | 84 93 | anbi12d | |- ( ph -> ( ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) /\ ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) <-> ( A M C /\ B N D ) ) ) |
| 95 | 75 94 | bitrid | |- ( ph -> ( A. k e. 2o ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( le ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) <-> ( A M C /\ B N D ) ) ) |
| 96 | 61 95 | bitrd | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ( le ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } <-> ( A M C /\ B N D ) ) ) |
| 97 | 45 52 96 | 3bitr3d | |- ( ph -> ( <. A , B >. .<_ <. C , D >. <-> ( A M C /\ B N D ) ) ) |