This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| prdsbasmpt.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt.r | |- ( ph -> R Fn I ) |
||
| prdsplusgval.f | |- ( ph -> F e. B ) |
||
| prdsplusgval.g | |- ( ph -> G e. B ) |
||
| prdsleval.l | |- .<_ = ( le ` Y ) |
||
| Assertion | prdsleval | |- ( ph -> ( F .<_ G <-> A. x e. I ( F ` x ) ( le ` ( R ` x ) ) ( G ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt.r | |- ( ph -> R Fn I ) |
|
| 6 | prdsplusgval.f | |- ( ph -> F e. B ) |
|
| 7 | prdsplusgval.g | |- ( ph -> G e. B ) |
|
| 8 | prdsleval.l | |- .<_ = ( le ` Y ) |
|
| 9 | df-br | |- ( F .<_ G <-> <. F , G >. e. .<_ ) |
|
| 10 | fnex | |- ( ( R Fn I /\ I e. W ) -> R e. _V ) |
|
| 11 | 5 4 10 | syl2anc | |- ( ph -> R e. _V ) |
| 12 | 5 | fndmd | |- ( ph -> dom R = I ) |
| 13 | 1 3 11 2 12 8 | prdsle | |- ( ph -> .<_ = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 14 | vex | |- f e. _V |
|
| 15 | vex | |- g e. _V |
|
| 16 | 14 15 | prss | |- ( ( f e. B /\ g e. B ) <-> { f , g } C_ B ) |
| 17 | 16 | anbi1i | |- ( ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) <-> ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 18 | 17 | opabbii | |- { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } |
| 19 | 13 18 | eqtr4di | |- ( ph -> .<_ = { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 20 | 19 | eleq2d | |- ( ph -> ( <. F , G >. e. .<_ <-> <. F , G >. e. { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) ) |
| 21 | 9 20 | bitrid | |- ( ph -> ( F .<_ G <-> <. F , G >. e. { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) ) |
| 22 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 23 | fveq1 | |- ( g = G -> ( g ` x ) = ( G ` x ) ) |
|
| 24 | 22 23 | breqan12d | |- ( ( f = F /\ g = G ) -> ( ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) <-> ( F ` x ) ( le ` ( R ` x ) ) ( G ` x ) ) ) |
| 25 | 24 | ralbidv | |- ( ( f = F /\ g = G ) -> ( A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) <-> A. x e. I ( F ` x ) ( le ` ( R ` x ) ) ( G ` x ) ) ) |
| 26 | 25 | opelopab2a | |- ( ( F e. B /\ G e. B ) -> ( <. F , G >. e. { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } <-> A. x e. I ( F ` x ) ( le ` ( R ` x ) ) ( G ` x ) ) ) |
| 27 | 6 7 26 | syl2anc | |- ( ph -> ( <. F , G >. e. { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } <-> A. x e. I ( F ` x ) ( le ` ( R ` x ) ) ( G ` x ) ) ) |
| 28 | 21 27 | bitrd | |- ( ph -> ( F .<_ G <-> A. x e. I ( F ` x ) ( le ` ( R ` x ) ) ( G ` x ) ) ) |