This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mhmmnd and ghmgrp . (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| mhmlem.a | |- ( ph -> A e. X ) |
||
| mhmlem.b | |- ( ph -> B e. X ) |
||
| Assertion | mhmlem | |- ( ph -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 2 | mhmlem.a | |- ( ph -> A e. X ) |
|
| 3 | mhmlem.b | |- ( ph -> B e. X ) |
|
| 4 | id | |- ( ph -> ph ) |
|
| 5 | eleq1 | |- ( x = A -> ( x e. X <-> A e. X ) ) |
|
| 6 | 5 | 3anbi2d | |- ( x = A -> ( ( ph /\ x e. X /\ y e. X ) <-> ( ph /\ A e. X /\ y e. X ) ) ) |
| 7 | fvoveq1 | |- ( x = A -> ( F ` ( x .+ y ) ) = ( F ` ( A .+ y ) ) ) |
|
| 8 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 9 | 8 | oveq1d | |- ( x = A -> ( ( F ` x ) .+^ ( F ` y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( x = A -> ( ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) <-> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) ) |
| 11 | 6 10 | imbi12d | |- ( x = A -> ( ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) <-> ( ( ph /\ A e. X /\ y e. X ) -> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) ) ) |
| 12 | eleq1 | |- ( y = B -> ( y e. X <-> B e. X ) ) |
|
| 13 | 12 | 3anbi3d | |- ( y = B -> ( ( ph /\ A e. X /\ y e. X ) <-> ( ph /\ A e. X /\ B e. X ) ) ) |
| 14 | oveq2 | |- ( y = B -> ( A .+ y ) = ( A .+ B ) ) |
|
| 15 | 14 | fveq2d | |- ( y = B -> ( F ` ( A .+ y ) ) = ( F ` ( A .+ B ) ) ) |
| 16 | fveq2 | |- ( y = B -> ( F ` y ) = ( F ` B ) ) |
|
| 17 | 16 | oveq2d | |- ( y = B -> ( ( F ` A ) .+^ ( F ` y ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) |
| 18 | 15 17 | eqeq12d | |- ( y = B -> ( ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) <-> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) |
| 19 | 13 18 | imbi12d | |- ( y = B -> ( ( ( ph /\ A e. X /\ y e. X ) -> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) <-> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) ) |
| 20 | 11 19 1 | vtocl2g | |- ( ( A e. X /\ B e. X ) -> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) |
| 21 | 2 3 20 | syl2anc | |- ( ph -> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) |
| 22 | 4 2 3 21 | mp3and | |- ( ph -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) |