This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xpsadd and xpsmul . (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsval.t | |- T = ( R Xs. S ) |
|
| xpsval.x | |- X = ( Base ` R ) |
||
| xpsval.y | |- Y = ( Base ` S ) |
||
| xpsval.1 | |- ( ph -> R e. V ) |
||
| xpsval.2 | |- ( ph -> S e. W ) |
||
| xpsadd.3 | |- ( ph -> A e. X ) |
||
| xpsadd.4 | |- ( ph -> B e. Y ) |
||
| xpsadd.5 | |- ( ph -> C e. X ) |
||
| xpsadd.6 | |- ( ph -> D e. Y ) |
||
| xpsadd.7 | |- ( ph -> ( A .x. C ) e. X ) |
||
| xpsadd.8 | |- ( ph -> ( B .X. D ) e. Y ) |
||
| xpsaddlem.m | |- .x. = ( E ` R ) |
||
| xpsaddlem.n | |- .X. = ( E ` S ) |
||
| xpsaddlem.p | |- .xb = ( E ` T ) |
||
| xpsaddlem.f | |- F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
||
| xpsaddlem.u | |- U = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
||
| xpsaddlem.1 | |- ( ( ph /\ { <. (/) , A >. , <. 1o , B >. } e. ran F /\ { <. (/) , C >. , <. 1o , D >. } e. ran F ) -> ( ( `' F ` { <. (/) , A >. , <. 1o , B >. } ) .xb ( `' F ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( `' F ` ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) ) ) |
||
| xpsaddlem.2 | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` U ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` U ) ) -> ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) = ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( E ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) ) |
||
| Assertion | xpsaddlem | |- ( ph -> ( <. A , B >. .xb <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsval.t | |- T = ( R Xs. S ) |
|
| 2 | xpsval.x | |- X = ( Base ` R ) |
|
| 3 | xpsval.y | |- Y = ( Base ` S ) |
|
| 4 | xpsval.1 | |- ( ph -> R e. V ) |
|
| 5 | xpsval.2 | |- ( ph -> S e. W ) |
|
| 6 | xpsadd.3 | |- ( ph -> A e. X ) |
|
| 7 | xpsadd.4 | |- ( ph -> B e. Y ) |
|
| 8 | xpsadd.5 | |- ( ph -> C e. X ) |
|
| 9 | xpsadd.6 | |- ( ph -> D e. Y ) |
|
| 10 | xpsadd.7 | |- ( ph -> ( A .x. C ) e. X ) |
|
| 11 | xpsadd.8 | |- ( ph -> ( B .X. D ) e. Y ) |
|
| 12 | xpsaddlem.m | |- .x. = ( E ` R ) |
|
| 13 | xpsaddlem.n | |- .X. = ( E ` S ) |
|
| 14 | xpsaddlem.p | |- .xb = ( E ` T ) |
|
| 15 | xpsaddlem.f | |- F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 16 | xpsaddlem.u | |- U = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 17 | xpsaddlem.1 | |- ( ( ph /\ { <. (/) , A >. , <. 1o , B >. } e. ran F /\ { <. (/) , C >. , <. 1o , D >. } e. ran F ) -> ( ( `' F ` { <. (/) , A >. , <. 1o , B >. } ) .xb ( `' F ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( `' F ` ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) ) ) |
|
| 18 | xpsaddlem.2 | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` U ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` U ) ) -> ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) = ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( E ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) ) |
|
| 19 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
| 20 | 15 | xpsfval | |- ( ( A e. X /\ B e. Y ) -> ( A F B ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 21 | 6 7 20 | syl2anc | |- ( ph -> ( A F B ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 22 | 19 21 | eqtr3id | |- ( ph -> ( F ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 23 | 6 7 | opelxpd | |- ( ph -> <. A , B >. e. ( X X. Y ) ) |
| 24 | 15 | xpsff1o2 | |- F : ( X X. Y ) -1-1-onto-> ran F |
| 25 | f1of | |- ( F : ( X X. Y ) -1-1-onto-> ran F -> F : ( X X. Y ) --> ran F ) |
|
| 26 | 24 25 | ax-mp | |- F : ( X X. Y ) --> ran F |
| 27 | 26 | ffvelcdmi | |- ( <. A , B >. e. ( X X. Y ) -> ( F ` <. A , B >. ) e. ran F ) |
| 28 | 23 27 | syl | |- ( ph -> ( F ` <. A , B >. ) e. ran F ) |
| 29 | 22 28 | eqeltrrd | |- ( ph -> { <. (/) , A >. , <. 1o , B >. } e. ran F ) |
| 30 | df-ov | |- ( C F D ) = ( F ` <. C , D >. ) |
|
| 31 | 15 | xpsfval | |- ( ( C e. X /\ D e. Y ) -> ( C F D ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 32 | 8 9 31 | syl2anc | |- ( ph -> ( C F D ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 33 | 30 32 | eqtr3id | |- ( ph -> ( F ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 34 | 8 9 | opelxpd | |- ( ph -> <. C , D >. e. ( X X. Y ) ) |
| 35 | 26 | ffvelcdmi | |- ( <. C , D >. e. ( X X. Y ) -> ( F ` <. C , D >. ) e. ran F ) |
| 36 | 34 35 | syl | |- ( ph -> ( F ` <. C , D >. ) e. ran F ) |
| 37 | 33 36 | eqeltrrd | |- ( ph -> { <. (/) , C >. , <. 1o , D >. } e. ran F ) |
| 38 | 29 37 17 | mpd3an23 | |- ( ph -> ( ( `' F ` { <. (/) , A >. , <. 1o , B >. } ) .xb ( `' F ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( `' F ` ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) ) ) |
| 39 | f1ocnvfv | |- ( ( F : ( X X. Y ) -1-1-onto-> ran F /\ <. A , B >. e. ( X X. Y ) ) -> ( ( F ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } -> ( `' F ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) ) |
|
| 40 | 24 23 39 | sylancr | |- ( ph -> ( ( F ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } -> ( `' F ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) ) |
| 41 | 22 40 | mpd | |- ( ph -> ( `' F ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) |
| 42 | f1ocnvfv | |- ( ( F : ( X X. Y ) -1-1-onto-> ran F /\ <. C , D >. e. ( X X. Y ) ) -> ( ( F ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } -> ( `' F ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) ) |
|
| 43 | 24 34 42 | sylancr | |- ( ph -> ( ( F ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } -> ( `' F ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) ) |
| 44 | 33 43 | mpd | |- ( ph -> ( `' F ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) |
| 45 | 41 44 | oveq12d | |- ( ph -> ( ( `' F ` { <. (/) , A >. , <. 1o , B >. } ) .xb ( `' F ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( <. A , B >. .xb <. C , D >. ) ) |
| 46 | iftrue | |- ( k = (/) -> if ( k = (/) , R , S ) = R ) |
|
| 47 | 46 | fveq2d | |- ( k = (/) -> ( E ` if ( k = (/) , R , S ) ) = ( E ` R ) ) |
| 48 | 47 12 | eqtr4di | |- ( k = (/) -> ( E ` if ( k = (/) , R , S ) ) = .x. ) |
| 49 | iftrue | |- ( k = (/) -> if ( k = (/) , A , B ) = A ) |
|
| 50 | iftrue | |- ( k = (/) -> if ( k = (/) , C , D ) = C ) |
|
| 51 | 48 49 50 | oveq123d | |- ( k = (/) -> ( if ( k = (/) , A , B ) ( E ` if ( k = (/) , R , S ) ) if ( k = (/) , C , D ) ) = ( A .x. C ) ) |
| 52 | iftrue | |- ( k = (/) -> if ( k = (/) , ( A .x. C ) , ( B .X. D ) ) = ( A .x. C ) ) |
|
| 53 | 51 52 | eqtr4d | |- ( k = (/) -> ( if ( k = (/) , A , B ) ( E ` if ( k = (/) , R , S ) ) if ( k = (/) , C , D ) ) = if ( k = (/) , ( A .x. C ) , ( B .X. D ) ) ) |
| 54 | iffalse | |- ( -. k = (/) -> if ( k = (/) , R , S ) = S ) |
|
| 55 | 54 | fveq2d | |- ( -. k = (/) -> ( E ` if ( k = (/) , R , S ) ) = ( E ` S ) ) |
| 56 | 55 13 | eqtr4di | |- ( -. k = (/) -> ( E ` if ( k = (/) , R , S ) ) = .X. ) |
| 57 | iffalse | |- ( -. k = (/) -> if ( k = (/) , A , B ) = B ) |
|
| 58 | iffalse | |- ( -. k = (/) -> if ( k = (/) , C , D ) = D ) |
|
| 59 | 56 57 58 | oveq123d | |- ( -. k = (/) -> ( if ( k = (/) , A , B ) ( E ` if ( k = (/) , R , S ) ) if ( k = (/) , C , D ) ) = ( B .X. D ) ) |
| 60 | iffalse | |- ( -. k = (/) -> if ( k = (/) , ( A .x. C ) , ( B .X. D ) ) = ( B .X. D ) ) |
|
| 61 | 59 60 | eqtr4d | |- ( -. k = (/) -> ( if ( k = (/) , A , B ) ( E ` if ( k = (/) , R , S ) ) if ( k = (/) , C , D ) ) = if ( k = (/) , ( A .x. C ) , ( B .X. D ) ) ) |
| 62 | 53 61 | pm2.61i | |- ( if ( k = (/) , A , B ) ( E ` if ( k = (/) , R , S ) ) if ( k = (/) , C , D ) ) = if ( k = (/) , ( A .x. C ) , ( B .X. D ) ) |
| 63 | 4 | adantr | |- ( ( ph /\ k e. 2o ) -> R e. V ) |
| 64 | 5 | adantr | |- ( ( ph /\ k e. 2o ) -> S e. W ) |
| 65 | simpr | |- ( ( ph /\ k e. 2o ) -> k e. 2o ) |
|
| 66 | fvprif | |- ( ( R e. V /\ S e. W /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = if ( k = (/) , R , S ) ) |
|
| 67 | 63 64 65 66 | syl3anc | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = if ( k = (/) , R , S ) ) |
| 68 | 67 | fveq2d | |- ( ( ph /\ k e. 2o ) -> ( E ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( E ` if ( k = (/) , R , S ) ) ) |
| 69 | 6 | adantr | |- ( ( ph /\ k e. 2o ) -> A e. X ) |
| 70 | 7 | adantr | |- ( ( ph /\ k e. 2o ) -> B e. Y ) |
| 71 | fvprif | |- ( ( A e. X /\ B e. Y /\ k e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` k ) = if ( k = (/) , A , B ) ) |
|
| 72 | 69 70 65 71 | syl3anc | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` k ) = if ( k = (/) , A , B ) ) |
| 73 | 8 | adantr | |- ( ( ph /\ k e. 2o ) -> C e. X ) |
| 74 | 9 | adantr | |- ( ( ph /\ k e. 2o ) -> D e. Y ) |
| 75 | fvprif | |- ( ( C e. X /\ D e. Y /\ k e. 2o ) -> ( { <. (/) , C >. , <. 1o , D >. } ` k ) = if ( k = (/) , C , D ) ) |
|
| 76 | 73 74 65 75 | syl3anc | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , C >. , <. 1o , D >. } ` k ) = if ( k = (/) , C , D ) ) |
| 77 | 68 72 76 | oveq123d | |- ( ( ph /\ k e. 2o ) -> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( E ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) = ( if ( k = (/) , A , B ) ( E ` if ( k = (/) , R , S ) ) if ( k = (/) , C , D ) ) ) |
| 78 | 10 | adantr | |- ( ( ph /\ k e. 2o ) -> ( A .x. C ) e. X ) |
| 79 | 11 | adantr | |- ( ( ph /\ k e. 2o ) -> ( B .X. D ) e. Y ) |
| 80 | fvprif | |- ( ( ( A .x. C ) e. X /\ ( B .X. D ) e. Y /\ k e. 2o ) -> ( { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ` k ) = if ( k = (/) , ( A .x. C ) , ( B .X. D ) ) ) |
|
| 81 | 78 79 65 80 | syl3anc | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ` k ) = if ( k = (/) , ( A .x. C ) , ( B .X. D ) ) ) |
| 82 | 62 77 81 | 3eqtr4a | |- ( ( ph /\ k e. 2o ) -> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( E ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) = ( { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ` k ) ) |
| 83 | 82 | mpteq2dva | |- ( ph -> ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( E ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) = ( k e. 2o |-> ( { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ` k ) ) ) |
| 84 | fnpr2o | |- ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
|
| 85 | 4 5 84 | syl2anc | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
| 86 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 87 | 1 2 3 4 5 15 86 16 | xpsrnbas | |- ( ph -> ran F = ( Base ` U ) ) |
| 88 | 29 87 | eleqtrd | |- ( ph -> { <. (/) , A >. , <. 1o , B >. } e. ( Base ` U ) ) |
| 89 | 37 87 | eleqtrd | |- ( ph -> { <. (/) , C >. , <. 1o , D >. } e. ( Base ` U ) ) |
| 90 | 85 88 89 18 | syl3anc | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) = ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( E ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) ) |
| 91 | fnpr2o | |- ( ( ( A .x. C ) e. X /\ ( B .X. D ) e. Y ) -> { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } Fn 2o ) |
|
| 92 | 10 11 91 | syl2anc | |- ( ph -> { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } Fn 2o ) |
| 93 | dffn5 | |- ( { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } Fn 2o <-> { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } = ( k e. 2o |-> ( { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ` k ) ) ) |
|
| 94 | 92 93 | sylib | |- ( ph -> { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } = ( k e. 2o |-> ( { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ` k ) ) ) |
| 95 | 83 90 94 | 3eqtr4d | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) = { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ) |
| 96 | 95 | fveq2d | |- ( ph -> ( `' F ` ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) ) = ( `' F ` { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ) ) |
| 97 | df-ov | |- ( ( A .x. C ) F ( B .X. D ) ) = ( F ` <. ( A .x. C ) , ( B .X. D ) >. ) |
|
| 98 | 15 | xpsfval | |- ( ( ( A .x. C ) e. X /\ ( B .X. D ) e. Y ) -> ( ( A .x. C ) F ( B .X. D ) ) = { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ) |
| 99 | 10 11 98 | syl2anc | |- ( ph -> ( ( A .x. C ) F ( B .X. D ) ) = { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ) |
| 100 | 97 99 | eqtr3id | |- ( ph -> ( F ` <. ( A .x. C ) , ( B .X. D ) >. ) = { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ) |
| 101 | 10 11 | opelxpd | |- ( ph -> <. ( A .x. C ) , ( B .X. D ) >. e. ( X X. Y ) ) |
| 102 | f1ocnvfv | |- ( ( F : ( X X. Y ) -1-1-onto-> ran F /\ <. ( A .x. C ) , ( B .X. D ) >. e. ( X X. Y ) ) -> ( ( F ` <. ( A .x. C ) , ( B .X. D ) >. ) = { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } -> ( `' F ` { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ) = <. ( A .x. C ) , ( B .X. D ) >. ) ) |
|
| 103 | 24 101 102 | sylancr | |- ( ph -> ( ( F ` <. ( A .x. C ) , ( B .X. D ) >. ) = { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } -> ( `' F ` { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ) = <. ( A .x. C ) , ( B .X. D ) >. ) ) |
| 104 | 100 103 | mpd | |- ( ph -> ( `' F ` { <. (/) , ( A .x. C ) >. , <. 1o , ( B .X. D ) >. } ) = <. ( A .x. C ) , ( B .X. D ) >. ) |
| 105 | 96 104 | eqtrd | |- ( ph -> ( `' F ` ( { <. (/) , A >. , <. 1o , B >. } ( E ` U ) { <. (/) , C >. , <. 1o , D >. } ) ) = <. ( A .x. C ) , ( B .X. D ) >. ) |
| 106 | 38 45 105 | 3eqtr3d | |- ( ph -> ( <. A , B >. .xb <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |