This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of pncan . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpncan | |- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -e B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexneg | |- ( B e. RR -> -e B = -u B ) |
|
| 2 | 1 | adantl | |- ( ( A e. RR* /\ B e. RR ) -> -e B = -u B ) |
| 3 | 2 | oveq2d | |- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -e B ) = ( ( A +e B ) +e -u B ) ) |
| 4 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 5 | 4 | ad2antlr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> -u B e. RR ) |
| 6 | rexr | |- ( -u B e. RR -> -u B e. RR* ) |
|
| 7 | renepnf | |- ( -u B e. RR -> -u B =/= +oo ) |
|
| 8 | xaddmnf2 | |- ( ( -u B e. RR* /\ -u B =/= +oo ) -> ( -oo +e -u B ) = -oo ) |
|
| 9 | 6 7 8 | syl2anc | |- ( -u B e. RR -> ( -oo +e -u B ) = -oo ) |
| 10 | 5 9 | syl | |- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( -oo +e -u B ) = -oo ) |
| 11 | oveq1 | |- ( A = -oo -> ( A +e B ) = ( -oo +e B ) ) |
|
| 12 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 13 | renepnf | |- ( B e. RR -> B =/= +oo ) |
|
| 14 | xaddmnf2 | |- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
|
| 15 | 12 13 14 | syl2anc | |- ( B e. RR -> ( -oo +e B ) = -oo ) |
| 16 | 15 | adantl | |- ( ( A e. RR* /\ B e. RR ) -> ( -oo +e B ) = -oo ) |
| 17 | 11 16 | sylan9eqr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( A +e B ) = -oo ) |
| 18 | 17 | oveq1d | |- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( ( A +e B ) +e -u B ) = ( -oo +e -u B ) ) |
| 19 | simpr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> A = -oo ) |
|
| 20 | 10 18 19 | 3eqtr4d | |- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( ( A +e B ) +e -u B ) = A ) |
| 21 | simpll | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> A e. RR* ) |
|
| 22 | simpr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> A =/= -oo ) |
|
| 23 | 12 | ad2antlr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. RR* ) |
| 24 | renemnf | |- ( B e. RR -> B =/= -oo ) |
|
| 25 | 24 | ad2antlr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B =/= -oo ) |
| 26 | 4 | ad2antlr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B e. RR ) |
| 27 | 26 6 | syl | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B e. RR* ) |
| 28 | renemnf | |- ( -u B e. RR -> -u B =/= -oo ) |
|
| 29 | 26 28 | syl | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B =/= -oo ) |
| 30 | xaddass | |- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( -u B e. RR* /\ -u B =/= -oo ) ) -> ( ( A +e B ) +e -u B ) = ( A +e ( B +e -u B ) ) ) |
|
| 31 | 21 22 23 25 27 29 30 | syl222anc | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( ( A +e B ) +e -u B ) = ( A +e ( B +e -u B ) ) ) |
| 32 | simplr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. RR ) |
|
| 33 | 32 26 | rexaddd | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B +e -u B ) = ( B + -u B ) ) |
| 34 | 32 | recnd | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. CC ) |
| 35 | 34 | negidd | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B + -u B ) = 0 ) |
| 36 | 33 35 | eqtrd | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B +e -u B ) = 0 ) |
| 37 | 36 | oveq2d | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e ( B +e -u B ) ) = ( A +e 0 ) ) |
| 38 | xaddrid | |- ( A e. RR* -> ( A +e 0 ) = A ) |
|
| 39 | 38 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e 0 ) = A ) |
| 40 | 37 39 | eqtrd | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e ( B +e -u B ) ) = A ) |
| 41 | 31 40 | eqtrd | |- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( ( A +e B ) +e -u B ) = A ) |
| 42 | 20 41 | pm2.61dane | |- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -u B ) = A ) |
| 43 | 3 42 | eqtrd | |- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -e B ) = A ) |