This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical bijection from ( A X. B ) to ( B X. A ) . (Contributed by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpcomf1o.1 | |- F = ( x e. ( A X. B ) |-> U. `' { x } ) |
|
| Assertion | xpcomf1o | |- F : ( A X. B ) -1-1-onto-> ( B X. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomf1o.1 | |- F = ( x e. ( A X. B ) |-> U. `' { x } ) |
|
| 2 | relxp | |- Rel ( A X. B ) |
|
| 3 | cnvf1o | |- ( Rel ( A X. B ) -> ( x e. ( A X. B ) |-> U. `' { x } ) : ( A X. B ) -1-1-onto-> `' ( A X. B ) ) |
|
| 4 | 2 3 | ax-mp | |- ( x e. ( A X. B ) |-> U. `' { x } ) : ( A X. B ) -1-1-onto-> `' ( A X. B ) |
| 5 | f1oeq1 | |- ( F = ( x e. ( A X. B ) |-> U. `' { x } ) -> ( F : ( A X. B ) -1-1-onto-> `' ( A X. B ) <-> ( x e. ( A X. B ) |-> U. `' { x } ) : ( A X. B ) -1-1-onto-> `' ( A X. B ) ) ) |
|
| 6 | 1 5 | ax-mp | |- ( F : ( A X. B ) -1-1-onto-> `' ( A X. B ) <-> ( x e. ( A X. B ) |-> U. `' { x } ) : ( A X. B ) -1-1-onto-> `' ( A X. B ) ) |
| 7 | 4 6 | mpbir | |- F : ( A X. B ) -1-1-onto-> `' ( A X. B ) |
| 8 | cnvxp | |- `' ( A X. B ) = ( B X. A ) |
|
| 9 | f1oeq3 | |- ( `' ( A X. B ) = ( B X. A ) -> ( F : ( A X. B ) -1-1-onto-> `' ( A X. B ) <-> F : ( A X. B ) -1-1-onto-> ( B X. A ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( F : ( A X. B ) -1-1-onto-> `' ( A X. B ) <-> F : ( A X. B ) -1-1-onto-> ( B X. A ) ) |
| 11 | 7 10 | mpbi | |- F : ( A X. B ) -1-1-onto-> ( B X. A ) |