This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom | |- ( E. z E. w E. x E. y ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> E. w E. z E. x E. y ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) ) |
|
| 2 | exrot4 | |- ( E. z E. w E. x E. y ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> E. x E. y E. z E. w ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) ) |
|
| 3 | opeq1 | |- ( w = <. x , y >. -> <. w , z >. = <. <. x , y >. , z >. ) |
|
| 4 | 3 | eqeq2d | |- ( w = <. x , y >. -> ( v = <. w , z >. <-> v = <. <. x , y >. , z >. ) ) |
| 5 | 4 | pm5.32ri | |- ( ( v = <. w , z >. /\ w = <. x , y >. ) <-> ( v = <. <. x , y >. , z >. /\ w = <. x , y >. ) ) |
| 6 | 5 | anbi1i | |- ( ( ( v = <. w , z >. /\ w = <. x , y >. ) /\ ph ) <-> ( ( v = <. <. x , y >. , z >. /\ w = <. x , y >. ) /\ ph ) ) |
| 7 | anass | |- ( ( ( v = <. w , z >. /\ w = <. x , y >. ) /\ ph ) <-> ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) ) |
|
| 8 | an32 | |- ( ( ( v = <. <. x , y >. , z >. /\ w = <. x , y >. ) /\ ph ) <-> ( ( v = <. <. x , y >. , z >. /\ ph ) /\ w = <. x , y >. ) ) |
|
| 9 | 6 7 8 | 3bitr3i | |- ( ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> ( ( v = <. <. x , y >. , z >. /\ ph ) /\ w = <. x , y >. ) ) |
| 10 | 9 | exbii | |- ( E. w ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> E. w ( ( v = <. <. x , y >. , z >. /\ ph ) /\ w = <. x , y >. ) ) |
| 11 | opex | |- <. x , y >. e. _V |
|
| 12 | 11 | isseti | |- E. w w = <. x , y >. |
| 13 | 19.42v | |- ( E. w ( ( v = <. <. x , y >. , z >. /\ ph ) /\ w = <. x , y >. ) <-> ( ( v = <. <. x , y >. , z >. /\ ph ) /\ E. w w = <. x , y >. ) ) |
|
| 14 | 12 13 | mpbiran2 | |- ( E. w ( ( v = <. <. x , y >. , z >. /\ ph ) /\ w = <. x , y >. ) <-> ( v = <. <. x , y >. , z >. /\ ph ) ) |
| 15 | 10 14 | bitri | |- ( E. w ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> ( v = <. <. x , y >. , z >. /\ ph ) ) |
| 16 | 15 | 3exbii | |- ( E. x E. y E. z E. w ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) ) |
| 17 | 2 16 | bitri | |- ( E. z E. w E. x E. y ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) ) |
| 18 | 19.42vv | |- ( E. x E. y ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> ( v = <. w , z >. /\ E. x E. y ( w = <. x , y >. /\ ph ) ) ) |
|
| 19 | 18 | 2exbii | |- ( E. w E. z E. x E. y ( v = <. w , z >. /\ ( w = <. x , y >. /\ ph ) ) <-> E. w E. z ( v = <. w , z >. /\ E. x E. y ( w = <. x , y >. /\ ph ) ) ) |
| 20 | 1 17 19 | 3bitr3i | |- ( E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. w E. z ( v = <. w , z >. /\ E. x E. y ( w = <. x , y >. /\ ph ) ) ) |
| 21 | 20 | abbii | |- { v | E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) } = { v | E. w E. z ( v = <. w , z >. /\ E. x E. y ( w = <. x , y >. /\ ph ) ) } |
| 22 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { v | E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) } |
|
| 23 | df-opab | |- { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } = { v | E. w E. z ( v = <. w , z >. /\ E. x E. y ( w = <. x , y >. /\ ph ) ) } |
|
| 24 | 21 22 23 | 3eqtr4i | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |