This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion. Special case of Theorem 9.5 of Quine p. 61. Version of oprabid with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 20-Mar-2013) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oprabidw | |- ( <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } <-> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. <. x , y >. , z >. e. _V |
|
| 2 | opex | |- <. x , y >. e. _V |
|
| 3 | vex | |- z e. _V |
|
| 4 | 2 3 | eqvinop | |- ( w = <. <. x , y >. , z >. <-> E. a E. t ( w = <. a , t >. /\ <. a , t >. = <. <. x , y >. , z >. ) ) |
| 5 | 4 | biimpi | |- ( w = <. <. x , y >. , z >. -> E. a E. t ( w = <. a , t >. /\ <. a , t >. = <. <. x , y >. , z >. ) ) |
| 6 | eqeq1 | |- ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. <-> <. a , t >. = <. <. x , y >. , z >. ) ) |
|
| 7 | vex | |- a e. _V |
|
| 8 | vex | |- t e. _V |
|
| 9 | 7 8 | opth1 | |- ( <. a , t >. = <. <. x , y >. , z >. -> a = <. x , y >. ) |
| 10 | 6 9 | biimtrdi | |- ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> a = <. x , y >. ) ) |
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | eqvinop | |- ( a = <. x , y >. <-> E. r E. s ( a = <. r , s >. /\ <. r , s >. = <. x , y >. ) ) |
| 14 | opeq1 | |- ( a = <. r , s >. -> <. a , t >. = <. <. r , s >. , t >. ) |
|
| 15 | 14 | eqeq2d | |- ( a = <. r , s >. -> ( w = <. a , t >. <-> w = <. <. r , s >. , t >. ) ) |
| 16 | 11 12 3 | otth2 | |- ( <. <. x , y >. , z >. = <. <. r , s >. , t >. <-> ( x = r /\ y = s /\ z = t ) ) |
| 17 | euequ | |- E! x x = r |
|
| 18 | eupick | |- ( ( E! x x = r /\ E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) -> ( x = r -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
|
| 19 | 17 18 | mpan | |- ( E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( x = r -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 20 | euequ | |- E! y y = s |
|
| 21 | eupick | |- ( ( E! y y = s /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( y = s -> E. z ( z = t /\ ph ) ) ) |
|
| 22 | 20 21 | mpan | |- ( E. y ( y = s /\ E. z ( z = t /\ ph ) ) -> ( y = s -> E. z ( z = t /\ ph ) ) ) |
| 23 | euequ | |- E! z z = t |
|
| 24 | eupick | |- ( ( E! z z = t /\ E. z ( z = t /\ ph ) ) -> ( z = t -> ph ) ) |
|
| 25 | 23 24 | mpan | |- ( E. z ( z = t /\ ph ) -> ( z = t -> ph ) ) |
| 26 | 22 25 | syl6 | |- ( E. y ( y = s /\ E. z ( z = t /\ ph ) ) -> ( y = s -> ( z = t -> ph ) ) ) |
| 27 | 19 26 | syl6 | |- ( E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( x = r -> ( y = s -> ( z = t -> ph ) ) ) ) |
| 28 | 27 | 3impd | |- ( E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( ( x = r /\ y = s /\ z = t ) -> ph ) ) |
| 29 | 16 28 | biimtrid | |- ( E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( <. <. x , y >. , z >. = <. <. r , s >. , t >. -> ph ) ) |
| 30 | df-3an | |- ( ( x = r /\ y = s /\ z = t ) <-> ( ( x = r /\ y = s ) /\ z = t ) ) |
|
| 31 | 16 30 | bitri | |- ( <. <. x , y >. , z >. = <. <. r , s >. , t >. <-> ( ( x = r /\ y = s ) /\ z = t ) ) |
| 32 | 31 | anbi1i | |- ( ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) <-> ( ( ( x = r /\ y = s ) /\ z = t ) /\ ph ) ) |
| 33 | anass | |- ( ( ( ( x = r /\ y = s ) /\ z = t ) /\ ph ) <-> ( ( x = r /\ y = s ) /\ ( z = t /\ ph ) ) ) |
|
| 34 | anass | |- ( ( ( x = r /\ y = s ) /\ ( z = t /\ ph ) ) <-> ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 35 | 32 33 34 | 3bitri | |- ( ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) <-> ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 36 | 35 | 3exbii | |- ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) <-> E. x E. y E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 37 | nfe1 | |- F/ x E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) |
|
| 38 | 19.8a | |- ( ( y = s /\ ( z = t /\ ph ) ) -> E. z ( y = s /\ ( z = t /\ ph ) ) ) |
|
| 39 | 38 | anim2i | |- ( ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 40 | 39 | eximi | |- ( E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. z ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 41 | biidd | |- ( A. x x = z -> ( ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) <-> ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
|
| 42 | 41 | drex1v | |- ( A. x x = z -> ( E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) <-> E. z ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
| 43 | 40 42 | imbitrrid | |- ( A. x x = z -> ( E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
| 44 | 19.40 | |- ( E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> ( E. z x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 45 | nfvd | |- ( -. A. x x = z -> F/ z x = r ) |
|
| 46 | 45 | 19.9d | |- ( -. A. x x = z -> ( E. z x = r -> x = r ) ) |
| 47 | 46 | anim1d | |- ( -. A. x x = z -> ( ( E. z x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
| 48 | 19.8a | |- ( ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 49 | 44 47 48 | syl56 | |- ( -. A. x x = z -> ( E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
| 50 | 43 49 | pm2.61i | |- ( E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 51 | 37 50 | exlimi | |- ( E. x E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 52 | 51 | eximi | |- ( E. y E. x E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. y E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 53 | excom | |- ( E. x E. y E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) <-> E. y E. x E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 54 | excom | |- ( E. x E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) <-> E. y E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 55 | 52 53 54 | 3imtr4i | |- ( E. x E. y E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 56 | nfe1 | |- F/ x E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) |
|
| 57 | 19.8a | |- ( E. z ( y = s /\ ( z = t /\ ph ) ) -> E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) |
|
| 58 | 57 | anim2i | |- ( ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 59 | 58 | eximi | |- ( E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. y ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 60 | biidd | |- ( A. x x = y -> ( ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) <-> ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
|
| 61 | 60 | drex1v | |- ( A. x x = y -> ( E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) <-> E. y ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
| 62 | 59 61 | imbitrrid | |- ( A. x x = y -> ( E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
| 63 | 19.40 | |- ( E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> ( E. y x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 64 | nfvd | |- ( -. A. x x = y -> F/ y x = r ) |
|
| 65 | 64 | 19.9d | |- ( -. A. x x = y -> ( E. y x = r -> x = r ) ) |
| 66 | 65 | anim1d | |- ( -. A. x x = y -> ( ( E. y x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) -> ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
| 67 | 19.8a | |- ( ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 68 | 63 66 67 | syl56 | |- ( -. A. x x = y -> ( E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) ) |
| 69 | 62 68 | pm2.61i | |- ( E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 70 | 56 69 | exlimi | |- ( E. x E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 71 | nfe1 | |- F/ y E. y ( y = s /\ E. z ( z = t /\ ph ) ) |
|
| 72 | 19.8a | |- ( ( z = t /\ ph ) -> E. z ( z = t /\ ph ) ) |
|
| 73 | 72 | anim2i | |- ( ( y = s /\ ( z = t /\ ph ) ) -> ( y = s /\ E. z ( z = t /\ ph ) ) ) |
| 74 | 73 | eximi | |- ( E. z ( y = s /\ ( z = t /\ ph ) ) -> E. z ( y = s /\ E. z ( z = t /\ ph ) ) ) |
| 75 | biidd | |- ( A. y y = z -> ( ( y = s /\ E. z ( z = t /\ ph ) ) <-> ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
|
| 76 | 75 | drex1v | |- ( A. y y = z -> ( E. y ( y = s /\ E. z ( z = t /\ ph ) ) <-> E. z ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 77 | 74 76 | imbitrrid | |- ( A. y y = z -> ( E. z ( y = s /\ ( z = t /\ ph ) ) -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 78 | 19.40 | |- ( E. z ( y = s /\ ( z = t /\ ph ) ) -> ( E. z y = s /\ E. z ( z = t /\ ph ) ) ) |
|
| 79 | nfvd | |- ( -. A. y y = z -> F/ z y = s ) |
|
| 80 | 79 | 19.9d | |- ( -. A. y y = z -> ( E. z y = s -> y = s ) ) |
| 81 | 80 | anim1d | |- ( -. A. y y = z -> ( ( E. z y = s /\ E. z ( z = t /\ ph ) ) -> ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 82 | 19.8a | |- ( ( y = s /\ E. z ( z = t /\ ph ) ) -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) |
|
| 83 | 78 81 82 | syl56 | |- ( -. A. y y = z -> ( E. z ( y = s /\ ( z = t /\ ph ) ) -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 84 | 77 83 | pm2.61i | |- ( E. z ( y = s /\ ( z = t /\ ph ) ) -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) |
| 85 | 71 84 | exlimi | |- ( E. y E. z ( y = s /\ ( z = t /\ ph ) ) -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) |
| 86 | 85 | anim2i | |- ( ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) -> ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 87 | 86 | eximi | |- ( E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 88 | 55 70 87 | 3syl | |- ( E. x E. y E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 89 | 36 88 | sylbi | |- ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) -> E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 90 | 29 89 | syl11 | |- ( <. <. x , y >. , z >. = <. <. r , s >. , t >. -> ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) -> ph ) ) |
| 91 | eqeq1 | |- ( w = <. <. r , s >. , t >. -> ( w = <. <. x , y >. , z >. <-> <. <. r , s >. , t >. = <. <. x , y >. , z >. ) ) |
|
| 92 | eqcom | |- ( <. <. r , s >. , t >. = <. <. x , y >. , z >. <-> <. <. x , y >. , z >. = <. <. r , s >. , t >. ) |
|
| 93 | 91 92 | bitrdi | |- ( w = <. <. r , s >. , t >. -> ( w = <. <. x , y >. , z >. <-> <. <. x , y >. , z >. = <. <. r , s >. , t >. ) ) |
| 94 | 93 | anbi1d | |- ( w = <. <. r , s >. , t >. -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) ) ) |
| 95 | 94 | 3exbidv | |- ( w = <. <. r , s >. , t >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) ) ) |
| 96 | 95 | imbi1d | |- ( w = <. <. r , s >. , t >. -> ( ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) <-> ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) -> ph ) ) ) |
| 97 | 93 96 | imbi12d | |- ( w = <. <. r , s >. , t >. -> ( ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) <-> ( <. <. x , y >. , z >. = <. <. r , s >. , t >. -> ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) -> ph ) ) ) ) |
| 98 | 90 97 | mpbiri | |- ( w = <. <. r , s >. , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) |
| 99 | 15 98 | biimtrdi | |- ( a = <. r , s >. -> ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 100 | 99 | adantr | |- ( ( a = <. r , s >. /\ <. r , s >. = <. x , y >. ) -> ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 101 | 100 | exlimivv | |- ( E. r E. s ( a = <. r , s >. /\ <. r , s >. = <. x , y >. ) -> ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 102 | 13 101 | sylbi | |- ( a = <. x , y >. -> ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 103 | 102 | com3l | |- ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( a = <. x , y >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 104 | 10 103 | mpdd | |- ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) |
| 105 | 104 | adantr | |- ( ( w = <. a , t >. /\ <. a , t >. = <. <. x , y >. , z >. ) -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) |
| 106 | 105 | exlimivv | |- ( E. a E. t ( w = <. a , t >. /\ <. a , t >. = <. <. x , y >. , z >. ) -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) |
| 107 | 5 106 | mpcom | |- ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) |
| 108 | 19.8a | |- ( ( w = <. <. x , y >. , z >. /\ ph ) -> E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
|
| 109 | 19.8a | |- ( E. z ( w = <. <. x , y >. , z >. /\ ph ) -> E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
|
| 110 | 19.8a | |- ( E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
|
| 111 | 108 109 110 | 3syl | |- ( ( w = <. <. x , y >. , z >. /\ ph ) -> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
| 112 | 111 | ex | |- ( w = <. <. x , y >. , z >. -> ( ph -> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) ) |
| 113 | 107 112 | impbid | |- ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> ph ) ) |
| 114 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
|
| 115 | 1 113 114 | elab2 | |- ( <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } <-> ph ) |