This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the composition of two classes. Definition 6.6(3) of TakeutiZaring p. 24. For example, ( ( exp o. cos )0 ) =e ( ex-co ) because ( cos0 ) = 1 (see cos0 ) and ( exp1 ) = e (see df-e ). Note that Definition 7 of Suppes p. 63 reverses A and B , uses /. instead of o. , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-co | |- ( A o. B ) = { <. x , y >. | E. z ( x B z /\ z A y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | cB | |- B |
|
| 2 | 0 1 | ccom | |- ( A o. B ) |
| 3 | vx | |- x |
|
| 4 | vy | |- y |
|
| 5 | vz | |- z |
|
| 6 | 3 | cv | |- x |
| 7 | 5 | cv | |- z |
| 8 | 6 7 1 | wbr | |- x B z |
| 9 | 4 | cv | |- y |
| 10 | 7 9 0 | wbr | |- z A y |
| 11 | 8 10 | wa | |- ( x B z /\ z A y ) |
| 12 | 11 5 | wex | |- E. z ( x B z /\ z A y ) |
| 13 | 12 3 4 | copab | |- { <. x , y >. | E. z ( x B z /\ z A y ) } |
| 14 | 2 13 | wceq | |- ( A o. B ) = { <. x , y >. | E. z ( x B z /\ z A y ) } |