This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpccat.t | |- T = ( C Xc. D ) |
|
| xpccat.c | |- ( ph -> C e. Cat ) |
||
| xpccat.d | |- ( ph -> D e. Cat ) |
||
| xpccat.x | |- X = ( Base ` C ) |
||
| xpccat.y | |- Y = ( Base ` D ) |
||
| xpccat.i | |- I = ( Id ` C ) |
||
| xpccat.j | |- J = ( Id ` D ) |
||
| Assertion | xpccatid | |- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpccat.t | |- T = ( C Xc. D ) |
|
| 2 | xpccat.c | |- ( ph -> C e. Cat ) |
|
| 3 | xpccat.d | |- ( ph -> D e. Cat ) |
|
| 4 | xpccat.x | |- X = ( Base ` C ) |
|
| 5 | xpccat.y | |- Y = ( Base ` D ) |
|
| 6 | xpccat.i | |- I = ( Id ` C ) |
|
| 7 | xpccat.j | |- J = ( Id ` D ) |
|
| 8 | 1 4 5 | xpcbas | |- ( X X. Y ) = ( Base ` T ) |
| 9 | 8 | a1i | |- ( ph -> ( X X. Y ) = ( Base ` T ) ) |
| 10 | eqidd | |- ( ph -> ( Hom ` T ) = ( Hom ` T ) ) |
|
| 11 | eqidd | |- ( ph -> ( comp ` T ) = ( comp ` T ) ) |
|
| 12 | 1 | ovexi | |- T e. _V |
| 13 | 12 | a1i | |- ( ph -> T e. _V ) |
| 14 | biid | |- ( ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) <-> ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) |
|
| 15 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 16 | 2 | adantr | |- ( ( ph /\ t e. ( X X. Y ) ) -> C e. Cat ) |
| 17 | xp1st | |- ( t e. ( X X. Y ) -> ( 1st ` t ) e. X ) |
|
| 18 | 17 | adantl | |- ( ( ph /\ t e. ( X X. Y ) ) -> ( 1st ` t ) e. X ) |
| 19 | 4 15 6 16 18 | catidcl | |- ( ( ph /\ t e. ( X X. Y ) ) -> ( I ` ( 1st ` t ) ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) ) |
| 20 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 21 | 3 | adantr | |- ( ( ph /\ t e. ( X X. Y ) ) -> D e. Cat ) |
| 22 | xp2nd | |- ( t e. ( X X. Y ) -> ( 2nd ` t ) e. Y ) |
|
| 23 | 22 | adantl | |- ( ( ph /\ t e. ( X X. Y ) ) -> ( 2nd ` t ) e. Y ) |
| 24 | 5 20 7 21 23 | catidcl | |- ( ( ph /\ t e. ( X X. Y ) ) -> ( J ` ( 2nd ` t ) ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) |
| 25 | 19 24 | opelxpd | |- ( ( ph /\ t e. ( X X. Y ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
| 26 | eqid | |- ( Hom ` T ) = ( Hom ` T ) |
|
| 27 | simpr | |- ( ( ph /\ t e. ( X X. Y ) ) -> t e. ( X X. Y ) ) |
|
| 28 | 1 8 15 20 26 27 27 | xpchom | |- ( ( ph /\ t e. ( X X. Y ) ) -> ( t ( Hom ` T ) t ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
| 29 | 25 28 | eleqtrrd | |- ( ( ph /\ t e. ( X X. Y ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( t ( Hom ` T ) t ) ) |
| 30 | fvex | |- ( I ` ( 1st ` t ) ) e. _V |
|
| 31 | fvex | |- ( J ` ( 2nd ` t ) ) e. _V |
|
| 32 | 30 31 | op1st | |- ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( I ` ( 1st ` t ) ) |
| 33 | 32 | oveq1i | |- ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( ( I ` ( 1st ` t ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) |
| 34 | 2 | adantr | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> C e. Cat ) |
| 35 | simpr1l | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> s e. ( X X. Y ) ) |
|
| 36 | xp1st | |- ( s e. ( X X. Y ) -> ( 1st ` s ) e. X ) |
|
| 37 | 35 36 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` s ) e. X ) |
| 38 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 39 | simpr1r | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> t e. ( X X. Y ) ) |
|
| 40 | 39 17 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` t ) e. X ) |
| 41 | simpr31 | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f e. ( s ( Hom ` T ) t ) ) |
|
| 42 | 1 8 15 20 26 35 39 | xpchom | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( s ( Hom ` T ) t ) = ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
| 43 | 41 42 | eleqtrd | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
| 44 | xp1st | |- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> ( 1st ` f ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) ) |
|
| 45 | 43 44 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` f ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) ) |
| 46 | 4 15 6 34 37 38 40 45 | catlid | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( I ` ( 1st ` t ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( 1st ` f ) ) |
| 47 | 33 46 | eqtrid | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( 1st ` f ) ) |
| 48 | 30 31 | op2nd | |- ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( J ` ( 2nd ` t ) ) |
| 49 | 48 | oveq1i | |- ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( ( J ` ( 2nd ` t ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) |
| 50 | 3 | adantr | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> D e. Cat ) |
| 51 | xp2nd | |- ( s e. ( X X. Y ) -> ( 2nd ` s ) e. Y ) |
|
| 52 | 35 51 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` s ) e. Y ) |
| 53 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 54 | 39 22 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` t ) e. Y ) |
| 55 | xp2nd | |- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) |
|
| 56 | 43 55 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) |
| 57 | 5 20 7 50 52 53 54 56 | catlid | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( J ` ( 2nd ` t ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( 2nd ` f ) ) |
| 58 | 49 57 | eqtrid | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( 2nd ` f ) ) |
| 59 | 47 58 | opeq12d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) , ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) >. = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 60 | eqid | |- ( comp ` T ) = ( comp ` T ) |
|
| 61 | 39 29 | syldan | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( t ( Hom ` T ) t ) ) |
| 62 | 1 8 26 38 53 60 35 39 39 41 61 | xpcco | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ( <. s , t >. ( comp ` T ) t ) f ) = <. ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) , ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) >. ) |
| 63 | 1st2nd2 | |- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
|
| 64 | 43 63 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 65 | 59 62 64 | 3eqtr4d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ( <. s , t >. ( comp ` T ) t ) f ) = f ) |
| 66 | 32 | oveq2i | |- ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( I ` ( 1st ` t ) ) ) |
| 67 | simpr2l | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> u e. ( X X. Y ) ) |
|
| 68 | xp1st | |- ( u e. ( X X. Y ) -> ( 1st ` u ) e. X ) |
|
| 69 | 67 68 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` u ) e. X ) |
| 70 | simpr32 | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g e. ( t ( Hom ` T ) u ) ) |
|
| 71 | 1 8 15 20 26 39 67 | xpchom | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( t ( Hom ` T ) u ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
| 72 | 70 71 | eleqtrd | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
| 73 | xp1st | |- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> ( 1st ` g ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) ) |
|
| 74 | 72 73 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` g ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) ) |
| 75 | 4 15 6 34 40 38 69 74 | catrid | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( I ` ( 1st ` t ) ) ) = ( 1st ` g ) ) |
| 76 | 66 75 | eqtrid | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( 1st ` g ) ) |
| 77 | 48 | oveq2i | |- ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( J ` ( 2nd ` t ) ) ) |
| 78 | xp2nd | |- ( u e. ( X X. Y ) -> ( 2nd ` u ) e. Y ) |
|
| 79 | 67 78 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` u ) e. Y ) |
| 80 | xp2nd | |- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) |
|
| 81 | 72 80 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) |
| 82 | 5 20 7 50 54 53 79 81 | catrid | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( J ` ( 2nd ` t ) ) ) = ( 2nd ` g ) ) |
| 83 | 77 82 | eqtrid | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( 2nd ` g ) ) |
| 84 | 76 83 | opeq12d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) >. = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 85 | 1 8 26 38 53 60 39 39 67 61 70 | xpcco | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. t , t >. ( comp ` T ) u ) <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = <. ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) >. ) |
| 86 | 1st2nd2 | |- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
|
| 87 | 72 86 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 88 | 84 85 87 | 3eqtr4d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. t , t >. ( comp ` T ) u ) <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = g ) |
| 89 | 4 15 38 34 37 40 69 45 74 | catcocl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) ) |
| 90 | 5 20 53 50 52 54 79 56 81 | catcocl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) |
| 91 | 89 90 | opelxpd | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
| 92 | 1 8 26 38 53 60 35 39 67 41 70 | xpcco | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. s , t >. ( comp ` T ) u ) f ) = <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) |
| 93 | 1 8 15 20 26 35 67 | xpchom | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( s ( Hom ` T ) u ) = ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
| 94 | 91 92 93 | 3eltr4d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. s , t >. ( comp ` T ) u ) f ) e. ( s ( Hom ` T ) u ) ) |
| 95 | simpr2r | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> v e. ( X X. Y ) ) |
|
| 96 | xp1st | |- ( v e. ( X X. Y ) -> ( 1st ` v ) e. X ) |
|
| 97 | 95 96 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` v ) e. X ) |
| 98 | simpr33 | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> h e. ( u ( Hom ` T ) v ) ) |
|
| 99 | 1 8 15 20 26 67 95 | xpchom | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( u ( Hom ` T ) v ) = ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 100 | 98 99 | eleqtrd | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 101 | xp1st | |- ( h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) -> ( 1st ` h ) e. ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) ) |
|
| 102 | 100 101 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` h ) e. ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) ) |
| 103 | 4 15 38 34 37 40 69 45 74 97 102 | catass | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) ) |
| 104 | 1 8 26 38 53 60 39 67 95 70 98 | xpcco | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. t , u >. ( comp ` T ) v ) g ) = <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) |
| 105 | 104 | fveq2d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( 1st ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) ) |
| 106 | ovex | |- ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) e. _V |
|
| 107 | ovex | |- ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) e. _V |
|
| 108 | 106 107 | op1st | |- ( 1st ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) = ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) |
| 109 | 105 108 | eqtrdi | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ) |
| 110 | 109 | oveq1d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) ) |
| 111 | 92 | fveq2d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( 1st ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) ) |
| 112 | ovex | |- ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) e. _V |
|
| 113 | ovex | |- ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) e. _V |
|
| 114 | 112 113 | op1st | |- ( 1st ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) = ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) |
| 115 | 111 114 | eqtrdi | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) |
| 116 | 115 | oveq2d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) ) |
| 117 | 103 110 116 | 3eqtr4d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) ) |
| 118 | xp2nd | |- ( v e. ( X X. Y ) -> ( 2nd ` v ) e. Y ) |
|
| 119 | 95 118 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` v ) e. Y ) |
| 120 | xp2nd | |- ( h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) -> ( 2nd ` h ) e. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) |
|
| 121 | 100 120 | syl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` h ) e. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) |
| 122 | 5 20 53 50 52 54 79 56 81 119 121 | catass | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) ) |
| 123 | 104 | fveq2d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( 2nd ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) ) |
| 124 | 106 107 | op2nd | |- ( 2nd ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) = ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) |
| 125 | 123 124 | eqtrdi | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ) |
| 126 | 125 | oveq1d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) ) |
| 127 | 92 | fveq2d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( 2nd ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) ) |
| 128 | 112 113 | op2nd | |- ( 2nd ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) = ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) |
| 129 | 127 128 | eqtrdi | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) |
| 130 | 129 | oveq2d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) ) |
| 131 | 122 126 130 | 3eqtr4d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) ) |
| 132 | 117 131 | opeq12d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) , ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) >. = <. ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) >. ) |
| 133 | 4 15 38 34 40 69 97 74 102 | catcocl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) ) |
| 134 | 5 20 53 50 54 79 119 81 121 | catcocl | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) |
| 135 | 133 134 | opelxpd | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 136 | 1 8 15 20 26 39 95 | xpchom | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( t ( Hom ` T ) v ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 137 | 135 104 136 | 3eltr4d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. t , u >. ( comp ` T ) v ) g ) e. ( t ( Hom ` T ) v ) ) |
| 138 | 1 8 26 38 53 60 35 39 95 41 137 | xpcco | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( h ( <. t , u >. ( comp ` T ) v ) g ) ( <. s , t >. ( comp ` T ) v ) f ) = <. ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) , ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) >. ) |
| 139 | 1 8 26 38 53 60 35 67 95 94 98 | xpcco | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. s , u >. ( comp ` T ) v ) ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = <. ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) >. ) |
| 140 | 132 138 139 | 3eqtr4d | |- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( h ( <. t , u >. ( comp ` T ) v ) g ) ( <. s , t >. ( comp ` T ) v ) f ) = ( h ( <. s , u >. ( comp ` T ) v ) ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) |
| 141 | 9 10 11 13 14 29 65 88 94 140 | iscatd2 | |- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) ) |
| 142 | vex | |- x e. _V |
|
| 143 | vex | |- y e. _V |
|
| 144 | 142 143 | op1std | |- ( t = <. x , y >. -> ( 1st ` t ) = x ) |
| 145 | 144 | fveq2d | |- ( t = <. x , y >. -> ( I ` ( 1st ` t ) ) = ( I ` x ) ) |
| 146 | 142 143 | op2ndd | |- ( t = <. x , y >. -> ( 2nd ` t ) = y ) |
| 147 | 146 | fveq2d | |- ( t = <. x , y >. -> ( J ` ( 2nd ` t ) ) = ( J ` y ) ) |
| 148 | 145 147 | opeq12d | |- ( t = <. x , y >. -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. = <. ( I ` x ) , ( J ` y ) >. ) |
| 149 | 148 | mpompt | |- ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) |
| 150 | 149 | eqeq2i | |- ( ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) <-> ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) |
| 151 | 150 | anbi2i | |- ( ( T e. Cat /\ ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) <-> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |
| 152 | 141 151 | sylib | |- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |