This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number X is positive real iff X / ( 1 + X ) is in ( 0 (,) 1 ) . Deduction form. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xov1plusxeqvd.1 | |- ( ph -> X e. CC ) |
|
| xov1plusxeqvd.2 | |- ( ph -> X =/= -u 1 ) |
||
| Assertion | xov1plusxeqvd | |- ( ph -> ( X e. RR+ <-> ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xov1plusxeqvd.1 | |- ( ph -> X e. CC ) |
|
| 2 | xov1plusxeqvd.2 | |- ( ph -> X =/= -u 1 ) |
|
| 3 | simpr | |- ( ( ph /\ X e. RR+ ) -> X e. RR+ ) |
|
| 4 | 3 | rpred | |- ( ( ph /\ X e. RR+ ) -> X e. RR ) |
| 5 | 1rp | |- 1 e. RR+ |
|
| 6 | 5 | a1i | |- ( ( ph /\ X e. RR+ ) -> 1 e. RR+ ) |
| 7 | 6 3 | rpaddcld | |- ( ( ph /\ X e. RR+ ) -> ( 1 + X ) e. RR+ ) |
| 8 | 4 7 | rerpdivcld | |- ( ( ph /\ X e. RR+ ) -> ( X / ( 1 + X ) ) e. RR ) |
| 9 | 7 | rprecred | |- ( ( ph /\ X e. RR+ ) -> ( 1 / ( 1 + X ) ) e. RR ) |
| 10 | 1red | |- ( ( ph /\ X e. RR+ ) -> 1 e. RR ) |
|
| 11 | 0red | |- ( ( ph /\ X e. RR+ ) -> 0 e. RR ) |
|
| 12 | 10 4 | readdcld | |- ( ( ph /\ X e. RR+ ) -> ( 1 + X ) e. RR ) |
| 13 | 10 3 | ltaddrpd | |- ( ( ph /\ X e. RR+ ) -> 1 < ( 1 + X ) ) |
| 14 | recgt1i | |- ( ( ( 1 + X ) e. RR /\ 1 < ( 1 + X ) ) -> ( 0 < ( 1 / ( 1 + X ) ) /\ ( 1 / ( 1 + X ) ) < 1 ) ) |
|
| 15 | 12 13 14 | syl2anc | |- ( ( ph /\ X e. RR+ ) -> ( 0 < ( 1 / ( 1 + X ) ) /\ ( 1 / ( 1 + X ) ) < 1 ) ) |
| 16 | 15 | simprd | |- ( ( ph /\ X e. RR+ ) -> ( 1 / ( 1 + X ) ) < 1 ) |
| 17 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 18 | 16 17 | breqtrrdi | |- ( ( ph /\ X e. RR+ ) -> ( 1 / ( 1 + X ) ) < ( 1 - 0 ) ) |
| 19 | 9 10 11 18 | ltsub13d | |- ( ( ph /\ X e. RR+ ) -> 0 < ( 1 - ( 1 / ( 1 + X ) ) ) ) |
| 20 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 21 | 20 1 | addcld | |- ( ph -> ( 1 + X ) e. CC ) |
| 22 | 20 | negcld | |- ( ph -> -u 1 e. CC ) |
| 23 | 20 1 22 2 | addneintrd | |- ( ph -> ( 1 + X ) =/= ( 1 + -u 1 ) ) |
| 24 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
| 25 | 24 | a1i | |- ( ph -> ( 1 + -u 1 ) = 0 ) |
| 26 | 23 25 | neeqtrd | |- ( ph -> ( 1 + X ) =/= 0 ) |
| 27 | 21 20 21 26 | divsubdird | |- ( ph -> ( ( ( 1 + X ) - 1 ) / ( 1 + X ) ) = ( ( ( 1 + X ) / ( 1 + X ) ) - ( 1 / ( 1 + X ) ) ) ) |
| 28 | 20 1 | pncan2d | |- ( ph -> ( ( 1 + X ) - 1 ) = X ) |
| 29 | 28 | oveq1d | |- ( ph -> ( ( ( 1 + X ) - 1 ) / ( 1 + X ) ) = ( X / ( 1 + X ) ) ) |
| 30 | 21 26 | dividd | |- ( ph -> ( ( 1 + X ) / ( 1 + X ) ) = 1 ) |
| 31 | 30 | oveq1d | |- ( ph -> ( ( ( 1 + X ) / ( 1 + X ) ) - ( 1 / ( 1 + X ) ) ) = ( 1 - ( 1 / ( 1 + X ) ) ) ) |
| 32 | 27 29 31 | 3eqtr3d | |- ( ph -> ( X / ( 1 + X ) ) = ( 1 - ( 1 / ( 1 + X ) ) ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ X e. RR+ ) -> ( X / ( 1 + X ) ) = ( 1 - ( 1 / ( 1 + X ) ) ) ) |
| 34 | 19 33 | breqtrrd | |- ( ( ph /\ X e. RR+ ) -> 0 < ( X / ( 1 + X ) ) ) |
| 35 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 36 | 15 | simpld | |- ( ( ph /\ X e. RR+ ) -> 0 < ( 1 / ( 1 + X ) ) ) |
| 37 | 35 36 | eqbrtrid | |- ( ( ph /\ X e. RR+ ) -> ( 1 - 1 ) < ( 1 / ( 1 + X ) ) ) |
| 38 | 10 10 9 37 | ltsub23d | |- ( ( ph /\ X e. RR+ ) -> ( 1 - ( 1 / ( 1 + X ) ) ) < 1 ) |
| 39 | 33 38 | eqbrtrd | |- ( ( ph /\ X e. RR+ ) -> ( X / ( 1 + X ) ) < 1 ) |
| 40 | 0xr | |- 0 e. RR* |
|
| 41 | 1xr | |- 1 e. RR* |
|
| 42 | elioo2 | |- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) <-> ( ( X / ( 1 + X ) ) e. RR /\ 0 < ( X / ( 1 + X ) ) /\ ( X / ( 1 + X ) ) < 1 ) ) ) |
|
| 43 | 40 41 42 | mp2an | |- ( ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) <-> ( ( X / ( 1 + X ) ) e. RR /\ 0 < ( X / ( 1 + X ) ) /\ ( X / ( 1 + X ) ) < 1 ) ) |
| 44 | 8 34 39 43 | syl3anbrc | |- ( ( ph /\ X e. RR+ ) -> ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) |
| 45 | 28 | adantr | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( ( 1 + X ) - 1 ) = X ) |
| 46 | 21 | adantr | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 + X ) e. CC ) |
| 47 | 26 | adantr | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 + X ) =/= 0 ) |
| 48 | 46 47 | recrecd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 / ( 1 + X ) ) ) = ( 1 + X ) ) |
| 49 | 21 1 21 26 | divsubdird | |- ( ph -> ( ( ( 1 + X ) - X ) / ( 1 + X ) ) = ( ( ( 1 + X ) / ( 1 + X ) ) - ( X / ( 1 + X ) ) ) ) |
| 50 | 20 1 | pncand | |- ( ph -> ( ( 1 + X ) - X ) = 1 ) |
| 51 | 50 | oveq1d | |- ( ph -> ( ( ( 1 + X ) - X ) / ( 1 + X ) ) = ( 1 / ( 1 + X ) ) ) |
| 52 | 30 | oveq1d | |- ( ph -> ( ( ( 1 + X ) / ( 1 + X ) ) - ( X / ( 1 + X ) ) ) = ( 1 - ( X / ( 1 + X ) ) ) ) |
| 53 | 49 51 52 | 3eqtr3d | |- ( ph -> ( 1 / ( 1 + X ) ) = ( 1 - ( X / ( 1 + X ) ) ) ) |
| 54 | 53 | adantr | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 + X ) ) = ( 1 - ( X / ( 1 + X ) ) ) ) |
| 55 | 1red | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 1 e. RR ) |
|
| 56 | simpr | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) |
|
| 57 | 56 43 | sylib | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( ( X / ( 1 + X ) ) e. RR /\ 0 < ( X / ( 1 + X ) ) /\ ( X / ( 1 + X ) ) < 1 ) ) |
| 58 | 57 | simp1d | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( X / ( 1 + X ) ) e. RR ) |
| 59 | 55 58 | resubcld | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 - ( X / ( 1 + X ) ) ) e. RR ) |
| 60 | 54 59 | eqeltrd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 + X ) ) e. RR ) |
| 61 | 0red | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 e. RR ) |
|
| 62 | 57 | simp3d | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( X / ( 1 + X ) ) < 1 ) |
| 63 | 62 17 | breqtrrdi | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( X / ( 1 + X ) ) < ( 1 - 0 ) ) |
| 64 | 58 55 61 63 | ltsub13d | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 < ( 1 - ( X / ( 1 + X ) ) ) ) |
| 65 | 64 54 | breqtrrd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 < ( 1 / ( 1 + X ) ) ) |
| 66 | 60 65 | elrpd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 + X ) ) e. RR+ ) |
| 67 | 66 | rprecred | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 / ( 1 + X ) ) ) e. RR ) |
| 68 | 48 67 | eqeltrrd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 + X ) e. RR ) |
| 69 | 68 55 | resubcld | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( ( 1 + X ) - 1 ) e. RR ) |
| 70 | 45 69 | eqeltrrd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> X e. RR ) |
| 71 | 1p0e1 | |- ( 1 + 0 ) = 1 |
|
| 72 | 57 | simp2d | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 < ( X / ( 1 + X ) ) ) |
| 73 | 35 72 | eqbrtrid | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 - 1 ) < ( X / ( 1 + X ) ) ) |
| 74 | 55 55 58 73 | ltsub23d | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 - ( X / ( 1 + X ) ) ) < 1 ) |
| 75 | 54 74 | eqbrtrd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 + X ) ) < 1 ) |
| 76 | 66 | reclt1d | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( ( 1 / ( 1 + X ) ) < 1 <-> 1 < ( 1 / ( 1 / ( 1 + X ) ) ) ) ) |
| 77 | 75 76 | mpbid | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 1 < ( 1 / ( 1 / ( 1 + X ) ) ) ) |
| 78 | 77 48 | breqtrd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 1 < ( 1 + X ) ) |
| 79 | 71 78 | eqbrtrid | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 + 0 ) < ( 1 + X ) ) |
| 80 | 61 70 55 | ltadd2d | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 0 < X <-> ( 1 + 0 ) < ( 1 + X ) ) ) |
| 81 | 79 80 | mpbird | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 < X ) |
| 82 | 70 81 | elrpd | |- ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> X e. RR+ ) |
| 83 | 44 82 | impbida | |- ( ph -> ( X e. RR+ <-> ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) ) |