This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number X is positive real iff X / ( 1 + X ) is in ( 0 (,) 1 ) . Deduction form. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xov1plusxeqvd.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| xov1plusxeqvd.2 | ⊢ ( 𝜑 → 𝑋 ≠ - 1 ) | ||
| Assertion | xov1plusxeqvd | ⊢ ( 𝜑 → ( 𝑋 ∈ ℝ+ ↔ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xov1plusxeqvd.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 2 | xov1plusxeqvd.2 | ⊢ ( 𝜑 → 𝑋 ≠ - 1 ) | |
| 3 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ+ ) | |
| 4 | 3 | rpred | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ ) |
| 5 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 6 | 5 | a1i | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 1 ∈ ℝ+ ) |
| 7 | 6 3 | rpaddcld | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 + 𝑋 ) ∈ ℝ+ ) |
| 8 | 4 7 | rerpdivcld | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ) |
| 9 | 7 | rprecred | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 / ( 1 + 𝑋 ) ) ∈ ℝ ) |
| 10 | 1red | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 1 ∈ ℝ ) | |
| 11 | 0red | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 0 ∈ ℝ ) | |
| 12 | 10 4 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 + 𝑋 ) ∈ ℝ ) |
| 13 | 10 3 | ltaddrpd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 1 < ( 1 + 𝑋 ) ) |
| 14 | recgt1i | ⊢ ( ( ( 1 + 𝑋 ) ∈ ℝ ∧ 1 < ( 1 + 𝑋 ) ) → ( 0 < ( 1 / ( 1 + 𝑋 ) ) ∧ ( 1 / ( 1 + 𝑋 ) ) < 1 ) ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 0 < ( 1 / ( 1 + 𝑋 ) ) ∧ ( 1 / ( 1 + 𝑋 ) ) < 1 ) ) |
| 16 | 15 | simprd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 / ( 1 + 𝑋 ) ) < 1 ) |
| 17 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 18 | 16 17 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 / ( 1 + 𝑋 ) ) < ( 1 − 0 ) ) |
| 19 | 9 10 11 18 | ltsub13d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 0 < ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) ) |
| 20 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 21 | 20 1 | addcld | ⊢ ( 𝜑 → ( 1 + 𝑋 ) ∈ ℂ ) |
| 22 | 20 | negcld | ⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 23 | 20 1 22 2 | addneintrd | ⊢ ( 𝜑 → ( 1 + 𝑋 ) ≠ ( 1 + - 1 ) ) |
| 24 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → ( 1 + - 1 ) = 0 ) |
| 26 | 23 25 | neeqtrd | ⊢ ( 𝜑 → ( 1 + 𝑋 ) ≠ 0 ) |
| 27 | 21 20 21 26 | divsubdird | ⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) − 1 ) / ( 1 + 𝑋 ) ) = ( ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) − ( 1 / ( 1 + 𝑋 ) ) ) ) |
| 28 | 20 1 | pncan2d | ⊢ ( 𝜑 → ( ( 1 + 𝑋 ) − 1 ) = 𝑋 ) |
| 29 | 28 | oveq1d | ⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) − 1 ) / ( 1 + 𝑋 ) ) = ( 𝑋 / ( 1 + 𝑋 ) ) ) |
| 30 | 21 26 | dividd | ⊢ ( 𝜑 → ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) = 1 ) |
| 31 | 30 | oveq1d | ⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) − ( 1 / ( 1 + 𝑋 ) ) ) = ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) ) |
| 32 | 27 29 31 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑋 / ( 1 + 𝑋 ) ) = ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 / ( 1 + 𝑋 ) ) = ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) ) |
| 34 | 19 33 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ) |
| 35 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 36 | 15 | simpld | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 0 < ( 1 / ( 1 + 𝑋 ) ) ) |
| 37 | 35 36 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 − 1 ) < ( 1 / ( 1 + 𝑋 ) ) ) |
| 38 | 10 10 9 37 | ltsub23d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) < 1 ) |
| 39 | 33 38 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) |
| 40 | 0xr | ⊢ 0 ∈ ℝ* | |
| 41 | 1xr | ⊢ 1 ∈ ℝ* | |
| 42 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ↔ ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ∧ 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ∧ ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) ) ) | |
| 43 | 40 41 42 | mp2an | ⊢ ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ↔ ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ∧ 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ∧ ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) ) |
| 44 | 8 34 39 43 | syl3anbrc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) |
| 45 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( ( 1 + 𝑋 ) − 1 ) = 𝑋 ) |
| 46 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 + 𝑋 ) ∈ ℂ ) |
| 47 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 + 𝑋 ) ≠ 0 ) |
| 48 | 46 47 | recrecd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 / ( 1 + 𝑋 ) ) ) = ( 1 + 𝑋 ) ) |
| 49 | 21 1 21 26 | divsubdird | ⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) − 𝑋 ) / ( 1 + 𝑋 ) ) = ( ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
| 50 | 20 1 | pncand | ⊢ ( 𝜑 → ( ( 1 + 𝑋 ) − 𝑋 ) = 1 ) |
| 51 | 50 | oveq1d | ⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) − 𝑋 ) / ( 1 + 𝑋 ) ) = ( 1 / ( 1 + 𝑋 ) ) ) |
| 52 | 30 | oveq1d | ⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) − ( 𝑋 / ( 1 + 𝑋 ) ) ) = ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
| 53 | 49 51 52 | 3eqtr3d | ⊢ ( 𝜑 → ( 1 / ( 1 + 𝑋 ) ) = ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 + 𝑋 ) ) = ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
| 55 | 1red | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 1 ∈ ℝ ) | |
| 56 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) | |
| 57 | 56 43 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ∧ 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ∧ ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) ) |
| 58 | 57 | simp1d | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ) |
| 59 | 55 58 | resubcld | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ∈ ℝ ) |
| 60 | 54 59 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 + 𝑋 ) ) ∈ ℝ ) |
| 61 | 0red | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 ∈ ℝ ) | |
| 62 | 57 | simp3d | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) |
| 63 | 62 17 | breqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 𝑋 / ( 1 + 𝑋 ) ) < ( 1 − 0 ) ) |
| 64 | 58 55 61 63 | ltsub13d | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 < ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
| 65 | 64 54 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 < ( 1 / ( 1 + 𝑋 ) ) ) |
| 66 | 60 65 | elrpd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 + 𝑋 ) ) ∈ ℝ+ ) |
| 67 | 66 | rprecred | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 / ( 1 + 𝑋 ) ) ) ∈ ℝ ) |
| 68 | 48 67 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 + 𝑋 ) ∈ ℝ ) |
| 69 | 68 55 | resubcld | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( ( 1 + 𝑋 ) − 1 ) ∈ ℝ ) |
| 70 | 45 69 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 𝑋 ∈ ℝ ) |
| 71 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
| 72 | 57 | simp2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ) |
| 73 | 35 72 | eqbrtrid | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 − 1 ) < ( 𝑋 / ( 1 + 𝑋 ) ) ) |
| 74 | 55 55 58 73 | ltsub23d | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) < 1 ) |
| 75 | 54 74 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 + 𝑋 ) ) < 1 ) |
| 76 | 66 | reclt1d | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( ( 1 / ( 1 + 𝑋 ) ) < 1 ↔ 1 < ( 1 / ( 1 / ( 1 + 𝑋 ) ) ) ) ) |
| 77 | 75 76 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 1 < ( 1 / ( 1 / ( 1 + 𝑋 ) ) ) ) |
| 78 | 77 48 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 1 < ( 1 + 𝑋 ) ) |
| 79 | 71 78 | eqbrtrid | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 + 0 ) < ( 1 + 𝑋 ) ) |
| 80 | 61 70 55 | ltadd2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 0 < 𝑋 ↔ ( 1 + 0 ) < ( 1 + 𝑋 ) ) ) |
| 81 | 79 80 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 < 𝑋 ) |
| 82 | 70 81 | elrpd | ⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 𝑋 ∈ ℝ+ ) |
| 83 | 44 82 | impbida | ⊢ ( 𝜑 → ( 𝑋 ∈ ℝ+ ↔ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) ) |