This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a bijection between words of length two with a fixed first symbol contained in a pair and the symbols contained in a pair together with the fixed symbol. (Contributed by Alexander van der Vekens, 28-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrd2f1tovbij | |- ( ( V e. Y /\ P e. V ) -> E. f f : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdexg | |- ( V e. Y -> Word V e. _V ) |
|
| 2 | 1 | adantr | |- ( ( V e. Y /\ P e. V ) -> Word V e. _V ) |
| 3 | rabexg | |- ( Word V e. _V -> { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } e. _V ) |
|
| 4 | mptexg | |- ( { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } e. _V -> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) e. _V ) |
|
| 5 | 2 3 4 | 3syl | |- ( ( V e. Y /\ P e. V ) -> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) e. _V ) |
| 6 | fveqeq2 | |- ( w = u -> ( ( # ` w ) = 2 <-> ( # ` u ) = 2 ) ) |
|
| 7 | fveq1 | |- ( w = u -> ( w ` 0 ) = ( u ` 0 ) ) |
|
| 8 | 7 | eqeq1d | |- ( w = u -> ( ( w ` 0 ) = P <-> ( u ` 0 ) = P ) ) |
| 9 | fveq1 | |- ( w = u -> ( w ` 1 ) = ( u ` 1 ) ) |
|
| 10 | 7 9 | preq12d | |- ( w = u -> { ( w ` 0 ) , ( w ` 1 ) } = { ( u ` 0 ) , ( u ` 1 ) } ) |
| 11 | 10 | eleq1d | |- ( w = u -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 12 | 6 8 11 | 3anbi123d | |- ( w = u -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 13 | 12 | cbvrabv | |- { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } = { u e. Word V | ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) } |
| 14 | preq2 | |- ( n = p -> { P , n } = { P , p } ) |
|
| 15 | 14 | eleq1d | |- ( n = p -> ( { P , n } e. X <-> { P , p } e. X ) ) |
| 16 | 15 | cbvrabv | |- { n e. V | { P , n } e. X } = { p e. V | { P , p } e. X } |
| 17 | fveqeq2 | |- ( t = w -> ( ( # ` t ) = 2 <-> ( # ` w ) = 2 ) ) |
|
| 18 | fveq1 | |- ( t = w -> ( t ` 0 ) = ( w ` 0 ) ) |
|
| 19 | 18 | eqeq1d | |- ( t = w -> ( ( t ` 0 ) = P <-> ( w ` 0 ) = P ) ) |
| 20 | fveq1 | |- ( t = w -> ( t ` 1 ) = ( w ` 1 ) ) |
|
| 21 | 18 20 | preq12d | |- ( t = w -> { ( t ` 0 ) , ( t ` 1 ) } = { ( w ` 0 ) , ( w ` 1 ) } ) |
| 22 | 21 | eleq1d | |- ( t = w -> ( { ( t ` 0 ) , ( t ` 1 ) } e. X <-> { ( w ` 0 ) , ( w ` 1 ) } e. X ) ) |
| 23 | 17 19 22 | 3anbi123d | |- ( t = w -> ( ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) <-> ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) ) ) |
| 24 | 23 | cbvrabv | |- { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
| 25 | 24 | mpteq1i | |- ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) = ( x e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |-> ( x ` 1 ) ) |
| 26 | 13 16 25 | wwlktovf1o | |- ( P e. V -> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) |
| 27 | 26 | adantl | |- ( ( V e. Y /\ P e. V ) -> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) |
| 28 | f1oeq1 | |- ( f = ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) -> ( f : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } <-> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) ) |
|
| 29 | 5 27 28 | spcedv | |- ( ( V e. Y /\ P e. V ) -> E. f f : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) |