This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wuncval | |- ( A e. V -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wunc | |- wUniCl = ( x e. _V |-> |^| { u e. WUni | x C_ u } ) |
|
| 2 | sseq1 | |- ( x = A -> ( x C_ u <-> A C_ u ) ) |
|
| 3 | 2 | rabbidv | |- ( x = A -> { u e. WUni | x C_ u } = { u e. WUni | A C_ u } ) |
| 4 | 3 | inteqd | |- ( x = A -> |^| { u e. WUni | x C_ u } = |^| { u e. WUni | A C_ u } ) |
| 5 | elex | |- ( A e. V -> A e. _V ) |
|
| 6 | wunex | |- ( A e. V -> E. u e. WUni A C_ u ) |
|
| 7 | rabn0 | |- ( { u e. WUni | A C_ u } =/= (/) <-> E. u e. WUni A C_ u ) |
|
| 8 | 6 7 | sylibr | |- ( A e. V -> { u e. WUni | A C_ u } =/= (/) ) |
| 9 | intex | |- ( { u e. WUni | A C_ u } =/= (/) <-> |^| { u e. WUni | A C_ u } e. _V ) |
|
| 10 | 8 9 | sylib | |- ( A e. V -> |^| { u e. WUni | A C_ u } e. _V ) |
| 11 | 1 4 5 10 | fvmptd3 | |- ( A e. V -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } ) |