This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than its sum with a nonzero ordinal. Theorem 18 of Suppes p. 209 and its converse. (Contributed by NM, 6-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaord1 | |- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> A e. ( A +o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | |- (/) e. On |
|
| 2 | oaord | |- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
| 4 | oa0 | |- ( A e. On -> ( A +o (/) ) = A ) |
|
| 5 | 4 | adantl | |- ( ( B e. On /\ A e. On ) -> ( A +o (/) ) = A ) |
| 6 | 5 | eleq1d | |- ( ( B e. On /\ A e. On ) -> ( ( A +o (/) ) e. ( A +o B ) <-> A e. ( A +o B ) ) ) |
| 7 | 3 6 | bitrd | |- ( ( B e. On /\ A e. On ) -> ( (/) e. B <-> A e. ( A +o B ) ) ) |
| 8 | 7 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> A e. ( A +o B ) ) ) |