This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications of a word of length two. (Contributed by AV, 27-Jul-2018) (Proof shortened by AV, 14-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdlen2i | |- ( ( S e. V /\ T e. V ) -> ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | |- 0 e. _V |
|
| 2 | 1ex | |- 1 e. _V |
|
| 3 | 1 2 | pm3.2i | |- ( 0 e. _V /\ 1 e. _V ) |
| 4 | simpl | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( S e. V /\ T e. V ) ) |
|
| 5 | 0ne1 | |- 0 =/= 1 |
|
| 6 | 5 | a1i | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> 0 =/= 1 ) |
| 7 | fprg | |- ( ( ( 0 e. _V /\ 1 e. _V ) /\ ( S e. V /\ T e. V ) /\ 0 =/= 1 ) -> { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) |
|
| 8 | 3 4 6 7 | mp3an2i | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) |
| 9 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 10 | 9 | eqcomi | |- { 0 , 1 } = ( 0 ..^ 2 ) |
| 11 | 10 | a1i | |- ( ( S e. V /\ T e. V ) -> { 0 , 1 } = ( 0 ..^ 2 ) ) |
| 12 | 11 | feq2d | |- ( ( S e. V /\ T e. V ) -> ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } <-> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> { S , T } ) ) |
| 13 | 12 | biimpa | |- ( ( ( S e. V /\ T e. V ) /\ { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> { S , T } ) |
| 14 | prssi | |- ( ( S e. V /\ T e. V ) -> { S , T } C_ V ) |
|
| 15 | 14 | adantr | |- ( ( ( S e. V /\ T e. V ) /\ { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) -> { S , T } C_ V ) |
| 16 | 13 15 | fssd | |- ( ( ( S e. V /\ T e. V ) /\ { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) |
| 17 | 16 | ex | |- ( ( S e. V /\ T e. V ) -> ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
| 18 | 17 | adantr | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
| 19 | 18 | impcom | |- ( ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } /\ ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) ) -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) |
| 20 | feq1 | |- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( W : ( 0 ..^ 2 ) --> V <-> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
|
| 21 | 20 | adantl | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( W : ( 0 ..^ 2 ) --> V <-> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
| 22 | 21 | adantl | |- ( ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } /\ ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) ) -> ( W : ( 0 ..^ 2 ) --> V <-> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
| 23 | 19 22 | mpbird | |- ( ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } /\ ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) ) -> W : ( 0 ..^ 2 ) --> V ) |
| 24 | 8 23 | mpancom | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> W : ( 0 ..^ 2 ) --> V ) |
| 25 | iswrdi | |- ( W : ( 0 ..^ 2 ) --> V -> W e. Word V ) |
|
| 26 | 24 25 | syl | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> W e. Word V ) |
| 27 | fveq2 | |- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( # ` W ) = ( # ` { <. 0 , S >. , <. 1 , T >. } ) ) |
|
| 28 | 5 | neii | |- -. 0 = 1 |
| 29 | simpl | |- ( ( S e. V /\ T e. V ) -> S e. V ) |
|
| 30 | opth1g | |- ( ( 0 e. _V /\ S e. V ) -> ( <. 0 , S >. = <. 1 , T >. -> 0 = 1 ) ) |
|
| 31 | 1 29 30 | sylancr | |- ( ( S e. V /\ T e. V ) -> ( <. 0 , S >. = <. 1 , T >. -> 0 = 1 ) ) |
| 32 | 28 31 | mtoi | |- ( ( S e. V /\ T e. V ) -> -. <. 0 , S >. = <. 1 , T >. ) |
| 33 | 32 | neqned | |- ( ( S e. V /\ T e. V ) -> <. 0 , S >. =/= <. 1 , T >. ) |
| 34 | opex | |- <. 0 , S >. e. _V |
|
| 35 | opex | |- <. 1 , T >. e. _V |
|
| 36 | 34 35 | pm3.2i | |- ( <. 0 , S >. e. _V /\ <. 1 , T >. e. _V ) |
| 37 | hashprg | |- ( ( <. 0 , S >. e. _V /\ <. 1 , T >. e. _V ) -> ( <. 0 , S >. =/= <. 1 , T >. <-> ( # ` { <. 0 , S >. , <. 1 , T >. } ) = 2 ) ) |
|
| 38 | 36 37 | mp1i | |- ( ( S e. V /\ T e. V ) -> ( <. 0 , S >. =/= <. 1 , T >. <-> ( # ` { <. 0 , S >. , <. 1 , T >. } ) = 2 ) ) |
| 39 | 33 38 | mpbid | |- ( ( S e. V /\ T e. V ) -> ( # ` { <. 0 , S >. , <. 1 , T >. } ) = 2 ) |
| 40 | 27 39 | sylan9eqr | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( # ` W ) = 2 ) |
| 41 | 5 | a1i | |- ( ( S e. V /\ T e. V ) -> 0 =/= 1 ) |
| 42 | fvpr1g | |- ( ( 0 e. _V /\ S e. V /\ 0 =/= 1 ) -> ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S ) |
|
| 43 | 1 29 41 42 | mp3an2i | |- ( ( S e. V /\ T e. V ) -> ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S ) |
| 44 | simpr | |- ( ( S e. V /\ T e. V ) -> T e. V ) |
|
| 45 | fvpr2g | |- ( ( 1 e. _V /\ T e. V /\ 0 =/= 1 ) -> ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) |
|
| 46 | 2 44 41 45 | mp3an2i | |- ( ( S e. V /\ T e. V ) -> ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) |
| 47 | 43 46 | jca | |- ( ( S e. V /\ T e. V ) -> ( ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S /\ ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) |
| 48 | 47 | adantr | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S /\ ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) |
| 49 | fveq1 | |- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( W ` 0 ) = ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) ) |
|
| 50 | 49 | eqeq1d | |- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W ` 0 ) = S <-> ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S ) ) |
| 51 | fveq1 | |- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( W ` 1 ) = ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) ) |
|
| 52 | 51 | eqeq1d | |- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W ` 1 ) = T <-> ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) |
| 53 | 50 52 | anbi12d | |- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) <-> ( ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S /\ ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) ) |
| 54 | 53 | adantl | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) <-> ( ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S /\ ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) ) |
| 55 | 48 54 | mpbird | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) |
| 56 | 26 40 55 | jca31 | |- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) |
| 57 | 56 | ex | |- ( ( S e. V /\ T e. V ) -> ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) ) |