This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length two represented as unordered pair of ordered pairs. (Contributed by AV, 20-Oct-2018) (Proof shortened by AV, 26-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrd2pr2op | |- ( ( W e. Word V /\ ( # ` W ) = 2 ) -> W = { <. 0 , ( W ` 0 ) >. , <. 1 , ( W ` 1 ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn | |- ( W e. Word V -> W Fn ( 0 ..^ ( # ` W ) ) ) |
|
| 2 | 1 | adantr | |- ( ( W e. Word V /\ ( # ` W ) = 2 ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 3 | oveq2 | |- ( ( # ` W ) = 2 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 2 ) ) |
|
| 4 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 5 | 3 4 | eqtr2di | |- ( ( # ` W ) = 2 -> { 0 , 1 } = ( 0 ..^ ( # ` W ) ) ) |
| 6 | 5 | adantl | |- ( ( W e. Word V /\ ( # ` W ) = 2 ) -> { 0 , 1 } = ( 0 ..^ ( # ` W ) ) ) |
| 7 | 6 | fneq2d | |- ( ( W e. Word V /\ ( # ` W ) = 2 ) -> ( W Fn { 0 , 1 } <-> W Fn ( 0 ..^ ( # ` W ) ) ) ) |
| 8 | 2 7 | mpbird | |- ( ( W e. Word V /\ ( # ` W ) = 2 ) -> W Fn { 0 , 1 } ) |
| 9 | c0ex | |- 0 e. _V |
|
| 10 | 1ex | |- 1 e. _V |
|
| 11 | 9 10 | fnprb | |- ( W Fn { 0 , 1 } <-> W = { <. 0 , ( W ` 0 ) >. , <. 1 , ( W ` 1 ) >. } ) |
| 12 | 8 11 | sylib | |- ( ( W e. Word V /\ ( # ` W ) = 2 ) -> W = { <. 0 , ( W ` 0 ) >. , <. 1 , ( W ` 1 ) >. } ) |