This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Proof shortened by BJ, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvpr2g | |- ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` B ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom | |- { <. A , C >. , <. B , D >. } = { <. B , D >. , <. A , C >. } |
|
| 2 | 1 | fveq1i | |- ( { <. A , C >. , <. B , D >. } ` B ) = ( { <. B , D >. , <. A , C >. } ` B ) |
| 3 | necom | |- ( A =/= B <-> B =/= A ) |
|
| 4 | fvpr1g | |- ( ( B e. V /\ D e. W /\ B =/= A ) -> ( { <. B , D >. , <. A , C >. } ` B ) = D ) |
|
| 5 | 3 4 | syl3an3b | |- ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. B , D >. , <. A , C >. } ` B ) = D ) |
| 6 | 2 5 | eqtrid | |- ( ( B e. V /\ D e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` B ) = D ) |