This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvpr1g | |- ( ( A e. V /\ C e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | |- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
|
| 2 | 1 | fveq1i | |- ( { <. A , C >. , <. B , D >. } ` A ) = ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) |
| 3 | necom | |- ( A =/= B <-> B =/= A ) |
|
| 4 | fvunsn | |- ( B =/= A -> ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) = ( { <. A , C >. } ` A ) ) |
|
| 5 | 3 4 | sylbi | |- ( A =/= B -> ( ( { <. A , C >. } u. { <. B , D >. } ) ` A ) = ( { <. A , C >. } ` A ) ) |
| 6 | 2 5 | eqtrid | |- ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` A ) = ( { <. A , C >. } ` A ) ) |
| 7 | 6 | 3ad2ant3 | |- ( ( A e. V /\ C e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` A ) = ( { <. A , C >. } ` A ) ) |
| 8 | fvsng | |- ( ( A e. V /\ C e. W ) -> ( { <. A , C >. } ` A ) = C ) |
|
| 9 | 8 | 3adant3 | |- ( ( A e. V /\ C e. W /\ A =/= B ) -> ( { <. A , C >. } ` A ) = C ) |
| 10 | 7 9 | eqtrd | |- ( ( A e. V /\ C e. W /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` A ) = C ) |