This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for wlkd . (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| wlkd.f | |- ( ph -> F e. Word _V ) |
||
| wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
||
| wlkdlem1.v | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |
||
| Assertion | wlkdlem1 | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| 2 | wlkd.f | |- ( ph -> F e. Word _V ) |
|
| 3 | wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
|
| 4 | wlkdlem1.v | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |
|
| 5 | wrdf | |- ( P e. Word _V -> P : ( 0 ..^ ( # ` P ) ) --> _V ) |
|
| 6 | 1 5 | syl | |- ( ph -> P : ( 0 ..^ ( # ` P ) ) --> _V ) |
| 7 | 3 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
| 8 | lencl | |- ( F e. Word _V -> ( # ` F ) e. NN0 ) |
|
| 9 | 2 8 | syl | |- ( ph -> ( # ` F ) e. NN0 ) |
| 10 | 9 | nn0zd | |- ( ph -> ( # ` F ) e. ZZ ) |
| 11 | fzval3 | |- ( ( # ` F ) e. ZZ -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
| 13 | 7 12 | eqtr4d | |- ( ph -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` F ) ) ) |
| 14 | 13 | feq2d | |- ( ph -> ( P : ( 0 ..^ ( # ` P ) ) --> _V <-> P : ( 0 ... ( # ` F ) ) --> _V ) ) |
| 15 | ssv | |- V C_ _V |
|
| 16 | fcdmssb | |- ( ( V C_ _V /\ A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) -> ( P : ( 0 ... ( # ` F ) ) --> _V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) |
|
| 17 | 15 4 16 | sylancr | |- ( ph -> ( P : ( 0 ... ( # ` F ) ) --> _V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 18 | 14 17 | bitrd | |- ( ph -> ( P : ( 0 ..^ ( # ` P ) ) --> _V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 19 | 6 18 | mpbid | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |