This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| wlkd.f | |- ( ph -> F e. Word _V ) |
||
| wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
||
| wlkd.e | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
||
| wlkd.n | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
||
| wlkd.g | |- ( ph -> G e. W ) |
||
| wlkd.v | |- V = ( Vtx ` G ) |
||
| wlkd.i | |- I = ( iEdg ` G ) |
||
| wlkd.a | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |
||
| Assertion | wlkd | |- ( ph -> F ( Walks ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| 2 | wlkd.f | |- ( ph -> F e. Word _V ) |
|
| 3 | wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
|
| 4 | wlkd.e | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
|
| 5 | wlkd.n | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
|
| 6 | wlkd.g | |- ( ph -> G e. W ) |
|
| 7 | wlkd.v | |- V = ( Vtx ` G ) |
|
| 8 | wlkd.i | |- I = ( iEdg ` G ) |
|
| 9 | wlkd.a | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |
|
| 10 | 1 2 3 4 | wlkdlem3 | |- ( ph -> F e. Word dom I ) |
| 11 | 1 2 3 9 | wlkdlem1 | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 12 | 1 2 3 4 5 | wlkdlem4 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 13 | 7 8 | iswlk | |- ( ( G e. W /\ F e. Word _V /\ P e. Word _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 14 | 6 2 1 13 | syl3anc | |- ( ph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 15 | 10 11 12 14 | mpbir3and | |- ( ph -> F ( Walks ` G ) P ) |