This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for wlkd . (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| wlkd.f | |- ( ph -> F e. Word _V ) |
||
| wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
||
| wlkd.e | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
||
| Assertion | wlkdlem2 | |- ( ph -> ( ( ( # ` F ) e. NN -> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| 2 | wlkd.f | |- ( ph -> F e. Word _V ) |
|
| 3 | wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
|
| 4 | wlkd.e | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
|
| 5 | fzo0end | |- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 6 | fveq2 | |- ( k = ( ( # ` F ) - 1 ) -> ( P ` k ) = ( P ` ( ( # ` F ) - 1 ) ) ) |
|
| 7 | fvoveq1 | |- ( k = ( ( # ` F ) - 1 ) -> ( P ` ( k + 1 ) ) = ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) ) |
|
| 8 | 6 7 | preq12d | |- ( k = ( ( # ` F ) - 1 ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) |
| 9 | 2fveq3 | |- ( k = ( ( # ` F ) - 1 ) -> ( I ` ( F ` k ) ) = ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) |
|
| 10 | 8 9 | sseq12d | |- ( k = ( ( # ` F ) - 1 ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } C_ ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 11 | 10 | rspcv | |- ( ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } C_ ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 12 | 5 11 | syl | |- ( ( # ` F ) e. NN -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } C_ ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 13 | fvex | |- ( P ` ( ( # ` F ) - 1 ) ) e. _V |
|
| 14 | fvex | |- ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) e. _V |
|
| 15 | 13 14 | prss | |- ( ( ( P ` ( ( # ` F ) - 1 ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) /\ ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } C_ ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) |
| 16 | nncn | |- ( ( # ` F ) e. NN -> ( # ` F ) e. CC ) |
|
| 17 | npcan1 | |- ( ( # ` F ) e. CC -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
|
| 18 | 16 17 | syl | |- ( ( # ` F ) e. NN -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
| 19 | 18 | fveq2d | |- ( ( # ` F ) e. NN -> ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) = ( P ` ( # ` F ) ) ) |
| 20 | 19 | eleq1d | |- ( ( # ` F ) e. NN -> ( ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) <-> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 21 | 20 | biimpd | |- ( ( # ` F ) e. NN -> ( ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) -> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 22 | 21 | adantld | |- ( ( # ` F ) e. NN -> ( ( ( P ` ( ( # ` F ) - 1 ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) /\ ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) -> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 23 | 15 22 | biimtrrid | |- ( ( # ` F ) e. NN -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } C_ ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) -> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 24 | 12 23 | syld | |- ( ( # ` F ) e. NN -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 25 | 4 24 | syl5com | |- ( ph -> ( ( # ` F ) e. NN -> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) ) |
| 26 | fvex | |- ( P ` k ) e. _V |
|
| 27 | fvex | |- ( P ` ( k + 1 ) ) e. _V |
|
| 28 | 26 27 | prss | |- ( ( ( P ` k ) e. ( I ` ( F ` k ) ) /\ ( P ` ( k + 1 ) ) e. ( I ` ( F ` k ) ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| 29 | simpl | |- ( ( ( P ` k ) e. ( I ` ( F ` k ) ) /\ ( P ` ( k + 1 ) ) e. ( I ` ( F ` k ) ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
|
| 30 | 28 29 | sylbir | |- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 31 | 30 | a1i | |- ( ( ph /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 32 | 31 | ralimdva | |- ( ph -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 33 | 4 32 | mpd | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 34 | 25 33 | jca | |- ( ph -> ( ( ( # ` F ) e. NN -> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |