This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcdmssb | |- ( ( V C_ W /\ A. k e. A ( F ` k ) e. V ) -> ( F : A --> W <-> F : A --> V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( V C_ W /\ A. k e. A ( F ` k ) e. V ) -> A. k e. A ( F ` k ) e. V ) |
|
| 2 | ffn | |- ( F : A --> W -> F Fn A ) |
|
| 3 | 1 2 | anim12ci | |- ( ( ( V C_ W /\ A. k e. A ( F ` k ) e. V ) /\ F : A --> W ) -> ( F Fn A /\ A. k e. A ( F ` k ) e. V ) ) |
| 4 | ffnfv | |- ( F : A --> V <-> ( F Fn A /\ A. k e. A ( F ` k ) e. V ) ) |
|
| 5 | 3 4 | sylibr | |- ( ( ( V C_ W /\ A. k e. A ( F ` k ) e. V ) /\ F : A --> W ) -> F : A --> V ) |
| 6 | simpl | |- ( ( V C_ W /\ A. k e. A ( F ` k ) e. V ) -> V C_ W ) |
|
| 7 | 6 | anim1ci | |- ( ( ( V C_ W /\ A. k e. A ( F ` k ) e. V ) /\ F : A --> V ) -> ( F : A --> V /\ V C_ W ) ) |
| 8 | fss | |- ( ( F : A --> V /\ V C_ W ) -> F : A --> W ) |
|
| 9 | 7 8 | syl | |- ( ( ( V C_ W /\ A. k e. A ( F ` k ) e. V ) /\ F : A --> V ) -> F : A --> W ) |
| 10 | 5 9 | impbida | |- ( ( V C_ W /\ A. k e. A ( F ` k ) e. V ) -> ( F : A --> W <-> F : A --> V ) ) |