This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021) (Revised by AV, 28-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgriswlk.v | |- V = ( Vtx ` G ) |
|
| upgriswlk.i | |- I = ( iEdg ` G ) |
||
| Assertion | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgriswlk.v | |- V = ( Vtx ` G ) |
|
| 2 | upgriswlk.i | |- I = ( iEdg ` G ) |
|
| 3 | 1 2 | iswlkg | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 4 | df-ifp | |- ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
|
| 5 | dfsn2 | |- { ( P ` k ) } = { ( P ` k ) , ( P ` k ) } |
|
| 6 | preq2 | |- ( ( P ` k ) = ( P ` ( k + 1 ) ) -> { ( P ` k ) , ( P ` k ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
|
| 7 | 5 6 | eqtrid | |- ( ( P ` k ) = ( P ` ( k + 1 ) ) -> { ( P ` k ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 8 | 7 | eqeq2d | |- ( ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } <-> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 9 | 8 | biimpa | |- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 10 | 9 | a1d | |- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 11 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 12 | 2 11 | upgredginwlk | |- ( ( G e. UPGraph /\ F e. Word dom I ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) ) |
| 13 | 12 | adantrr | |- ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) ) |
| 14 | 13 | imp | |- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) |
| 15 | simp-4l | |- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> G e. UPGraph ) |
|
| 16 | simpr | |- ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) |
|
| 17 | 16 | adantr | |- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) |
| 18 | simpr | |- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
|
| 19 | 18 | adantl | |- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| 20 | fvexd | |- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` k ) e. _V ) |
|
| 21 | fvexd | |- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` ( k + 1 ) ) e. _V ) |
|
| 22 | neqne | |- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
|
| 23 | 20 21 22 | 3jca | |- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 24 | 23 | adantr | |- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 25 | 24 | adantl | |- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 26 | 1 11 | upgredgpr | |- ( ( ( G e. UPGraph /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( I ` ( F ` k ) ) ) |
| 27 | 15 17 19 25 26 | syl31anc | |- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( I ` ( F ` k ) ) ) |
| 28 | 27 | eqcomd | |- ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 29 | 28 | exp31 | |- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` k ) ) e. ( Edg ` G ) -> ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 30 | 14 29 | mpd | |- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 31 | 30 | com12 | |- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 32 | 10 31 | jaoi | |- ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 33 | 32 | com12 | |- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 34 | 4 33 | biimtrid | |- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 35 | ifpprsnss | |- ( ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
|
| 36 | 34 35 | impbid1 | |- ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 37 | 36 | ralbidva | |- ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 38 | 37 | pm5.32da | |- ( G e. UPGraph -> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 39 | df-3an | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
|
| 40 | df-3an | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
|
| 41 | 38 39 40 | 3bitr4g | |- ( G e. UPGraph -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 42 | 3 41 | bitrd | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |