This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for wlk2v2e : The values of I after F are edges between two vertices enumerated by P . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 9-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlk2v2e.i | |- I = <" { X , Y } "> |
|
| wlk2v2e.f | |- F = <" 0 0 "> |
||
| wlk2v2e.x | |- X e. _V |
||
| wlk2v2e.y | |- Y e. _V |
||
| wlk2v2e.p | |- P = <" X Y X "> |
||
| Assertion | wlk2v2elem2 | |- A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.i | |- I = <" { X , Y } "> |
|
| 2 | wlk2v2e.f | |- F = <" 0 0 "> |
|
| 3 | wlk2v2e.x | |- X e. _V |
|
| 4 | wlk2v2e.y | |- Y e. _V |
|
| 5 | wlk2v2e.p | |- P = <" X Y X "> |
|
| 6 | 2 | fveq1i | |- ( F ` 0 ) = ( <" 0 0 "> ` 0 ) |
| 7 | 0z | |- 0 e. ZZ |
|
| 8 | s2fv0 | |- ( 0 e. ZZ -> ( <" 0 0 "> ` 0 ) = 0 ) |
|
| 9 | 7 8 | ax-mp | |- ( <" 0 0 "> ` 0 ) = 0 |
| 10 | 6 9 | eqtri | |- ( F ` 0 ) = 0 |
| 11 | 10 | fveq2i | |- ( I ` ( F ` 0 ) ) = ( I ` 0 ) |
| 12 | 1 | fveq1i | |- ( I ` 0 ) = ( <" { X , Y } "> ` 0 ) |
| 13 | prex | |- { X , Y } e. _V |
|
| 14 | s1fv | |- ( { X , Y } e. _V -> ( <" { X , Y } "> ` 0 ) = { X , Y } ) |
|
| 15 | 13 14 | ax-mp | |- ( <" { X , Y } "> ` 0 ) = { X , Y } |
| 16 | 12 15 | eqtri | |- ( I ` 0 ) = { X , Y } |
| 17 | 5 | fveq1i | |- ( P ` 0 ) = ( <" X Y X "> ` 0 ) |
| 18 | s3fv0 | |- ( X e. _V -> ( <" X Y X "> ` 0 ) = X ) |
|
| 19 | 3 18 | ax-mp | |- ( <" X Y X "> ` 0 ) = X |
| 20 | 17 19 | eqtri | |- ( P ` 0 ) = X |
| 21 | 5 | fveq1i | |- ( P ` 1 ) = ( <" X Y X "> ` 1 ) |
| 22 | s3fv1 | |- ( Y e. _V -> ( <" X Y X "> ` 1 ) = Y ) |
|
| 23 | 4 22 | ax-mp | |- ( <" X Y X "> ` 1 ) = Y |
| 24 | 21 23 | eqtri | |- ( P ` 1 ) = Y |
| 25 | 20 24 | preq12i | |- { ( P ` 0 ) , ( P ` 1 ) } = { X , Y } |
| 26 | 25 | eqcomi | |- { X , Y } = { ( P ` 0 ) , ( P ` 1 ) } |
| 27 | 11 16 26 | 3eqtri | |- ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } |
| 28 | 2 | fveq1i | |- ( F ` 1 ) = ( <" 0 0 "> ` 1 ) |
| 29 | s2fv1 | |- ( 0 e. ZZ -> ( <" 0 0 "> ` 1 ) = 0 ) |
|
| 30 | 7 29 | ax-mp | |- ( <" 0 0 "> ` 1 ) = 0 |
| 31 | 28 30 | eqtri | |- ( F ` 1 ) = 0 |
| 32 | 31 | fveq2i | |- ( I ` ( F ` 1 ) ) = ( I ` 0 ) |
| 33 | prcom | |- { X , Y } = { Y , X } |
|
| 34 | 5 | fveq1i | |- ( P ` 2 ) = ( <" X Y X "> ` 2 ) |
| 35 | s3fv2 | |- ( X e. _V -> ( <" X Y X "> ` 2 ) = X ) |
|
| 36 | 3 35 | ax-mp | |- ( <" X Y X "> ` 2 ) = X |
| 37 | 34 36 | eqtri | |- ( P ` 2 ) = X |
| 38 | 24 37 | preq12i | |- { ( P ` 1 ) , ( P ` 2 ) } = { Y , X } |
| 39 | 38 | eqcomi | |- { Y , X } = { ( P ` 1 ) , ( P ` 2 ) } |
| 40 | 33 39 | eqtri | |- { X , Y } = { ( P ` 1 ) , ( P ` 2 ) } |
| 41 | 32 16 40 | 3eqtri | |- ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } |
| 42 | 2wlklem | |- ( A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 43 | 27 41 42 | mpbir2an | |- A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } |
| 44 | 5 2 | 2wlkdlem2 | |- ( 0 ..^ ( # ` F ) ) = { 0 , 1 } |
| 45 | 44 | raleqi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 46 | 43 45 | mpbir | |- A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } |