This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlk1walk.i | |- I = ( iEdg ` G ) |
|
| Assertion | wlk1walk | |- ( F ( Walks ` G ) P -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk1walk.i | |- I = ( iEdg ` G ) |
|
| 2 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 3 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | 3 4 | iswlk | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) ) ) |
| 6 | fvex | |- ( I ` ( F ` ( k - 1 ) ) ) e. _V |
|
| 7 | 6 | inex1 | |- ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) e. _V |
| 8 | fzo0ss1 | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
|
| 9 | 8 | sseli | |- ( k e. ( 1 ..^ ( # ` F ) ) -> k e. ( 0 ..^ ( # ` F ) ) ) |
| 10 | wkslem1 | |- ( i = k -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
|
| 11 | 10 | rspcv | |- ( k e. ( 0 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 12 | 9 11 | syl | |- ( k e. ( 1 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 13 | 12 | imp | |- ( ( k e. ( 1 ..^ ( # ` F ) ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) |
| 14 | elfzofz | |- ( k e. ( 1 ..^ ( # ` F ) ) -> k e. ( 1 ... ( # ` F ) ) ) |
|
| 15 | fz1fzo0m1 | |- ( k e. ( 1 ... ( # ` F ) ) -> ( k - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 16 | wkslem1 | |- ( i = ( k - 1 ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) <-> if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
|
| 17 | 16 | rspcv | |- ( ( k - 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 18 | 14 15 17 | 3syl | |- ( k e. ( 1 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 19 | 18 | imp | |- ( ( k e. ( 1 ..^ ( # ` F ) ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) |
| 20 | df-ifp | |- ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
|
| 21 | elfzoelz | |- ( k e. ( 1 ..^ ( # ` F ) ) -> k e. ZZ ) |
|
| 22 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 23 | eqidd | |- ( k e. CC -> ( k - 1 ) = ( k - 1 ) ) |
|
| 24 | npcan1 | |- ( k e. CC -> ( ( k - 1 ) + 1 ) = k ) |
|
| 25 | wkslem2 | |- ( ( ( k - 1 ) = ( k - 1 ) /\ ( ( k - 1 ) + 1 ) = k ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
|
| 26 | 23 24 25 | syl2anc | |- ( k e. CC -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 27 | 21 22 26 | 3syl | |- ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 28 | df-ifp | |- ( if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) \/ ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
|
| 29 | sneq | |- ( ( P ` ( k - 1 ) ) = ( P ` k ) -> { ( P ` ( k - 1 ) ) } = { ( P ` k ) } ) |
|
| 30 | 29 | eqeq2d | |- ( ( P ` ( k - 1 ) ) = ( P ` k ) -> ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } <-> ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } ) ) |
| 31 | fvex | |- ( P ` k ) e. _V |
|
| 32 | 31 | snid | |- ( P ` k ) e. { ( P ` k ) } |
| 33 | 1 | fveq1i | |- ( I ` ( F ` ( k - 1 ) ) ) = ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) |
| 34 | 33 | eleq2i | |- ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) <-> ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) |
| 35 | eleq2 | |- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) <-> ( P ` k ) e. { ( P ` k ) } ) ) |
|
| 36 | 34 35 | bitrid | |- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) <-> ( P ` k ) e. { ( P ` k ) } ) ) |
| 37 | 32 36 | mpbiri | |- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) ) |
| 38 | eleq2 | |- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) <-> ( P ` k ) e. { ( P ` k ) } ) ) |
|
| 39 | 32 38 | mpbiri | |- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 40 | 1 | fveq1i | |- ( I ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) |
| 41 | 39 40 | eleqtrrdi | |- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 42 | 37 41 | anim12i | |- ( ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 43 | 42 | ex | |- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 44 | 30 43 | biimtrdi | |- ( ( P ` ( k - 1 ) ) = ( P ` k ) -> ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 45 | 44 | imp | |- ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 46 | 45 | com12 | |- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 47 | 46 | adantl | |- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 48 | fvex | |- ( P ` ( k + 1 ) ) e. _V |
|
| 49 | 31 48 | prss | |- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) /\ ( P ` ( k + 1 ) ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 50 | 1 | eqcomi | |- ( iEdg ` G ) = I |
| 51 | 50 | fveq1i | |- ( ( iEdg ` G ) ` ( F ` k ) ) = ( I ` ( F ` k ) ) |
| 52 | 51 | eleq2i | |- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) <-> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 53 | 52 | biimpi | |- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 54 | 53 | adantr | |- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) /\ ( P ` ( k + 1 ) ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 55 | 49 54 | sylbir | |- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 56 | 37 55 | anim12i | |- ( ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 57 | 56 | ex | |- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 58 | 30 57 | biimtrdi | |- ( ( P ` ( k - 1 ) ) = ( P ` k ) -> ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 59 | 58 | imp | |- ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 60 | 59 | com12 | |- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 61 | 60 | adantl | |- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 62 | 47 61 | jaoi | |- ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 63 | 62 | com12 | |- ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 64 | fvex | |- ( P ` ( k - 1 ) ) e. _V |
|
| 65 | 64 31 | prss | |- ( ( ( P ` ( k - 1 ) ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) |
| 66 | 50 | fveq1i | |- ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = ( I ` ( F ` ( k - 1 ) ) ) |
| 67 | 66 | eleq2i | |- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) <-> ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) ) |
| 68 | 67 | biimpi | |- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) ) |
| 69 | 40 | eleq2i | |- ( ( P ` k ) e. ( I ` ( F ` k ) ) <-> ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 70 | 69 38 | bitrid | |- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` k ) ) <-> ( P ` k ) e. { ( P ` k ) } ) ) |
| 71 | 32 70 | mpbiri | |- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 72 | 68 71 | anim12i | |- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 73 | 72 | ex | |- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 74 | 73 | adantl | |- ( ( ( P ` ( k - 1 ) ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 75 | 65 74 | sylbir | |- ( { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 76 | 75 | adantl | |- ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 77 | 76 | com12 | |- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 78 | 77 | adantl | |- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 79 | 67 52 | anbi12i | |- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 80 | 79 | biimpi | |- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 81 | 80 | ex | |- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 82 | 81 | adantl | |- ( ( ( P ` ( k - 1 ) ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 83 | 65 82 | sylbir | |- ( { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 84 | 83 | adantl | |- ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 85 | 84 | com12 | |- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 86 | 85 | adantr | |- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) /\ ( P ` ( k + 1 ) ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 87 | 49 86 | sylbir | |- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 88 | 87 | adantl | |- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 89 | 78 88 | jaoi | |- ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 90 | 89 | com12 | |- ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 91 | 63 90 | jaoi | |- ( ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) \/ ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 92 | 28 91 | sylbi | |- ( if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 93 | 27 92 | biimtrdi | |- ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 94 | 93 | com3r | |- ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 95 | 20 94 | sylbi | |- ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 96 | 95 | com12 | |- ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 97 | 96 | adantr | |- ( ( k e. ( 1 ..^ ( # ` F ) ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 98 | 13 19 97 | mp2d | |- ( ( k e. ( 1 ..^ ( # ` F ) ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 99 | 98 | ancoms | |- ( ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) /\ k e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 100 | inelcm | |- ( ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) -> ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) =/= (/) ) |
|
| 101 | 99 100 | syl | |- ( ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) /\ k e. ( 1 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) =/= (/) ) |
| 102 | hashge1 | |- ( ( ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) e. _V /\ ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) =/= (/) ) -> 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
|
| 103 | 7 101 102 | sylancr | |- ( ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) /\ k e. ( 1 ..^ ( # ` F ) ) ) -> 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| 104 | 103 | ralrimiva | |- ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| 105 | 104 | 3ad2ant3 | |- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| 106 | 5 105 | biimtrdi | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) |
| 107 | 2 106 | mpcom | |- ( F ( Walks ` G ) P -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |