This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk is an s-walk "on the edge level" (with s=1) according to Aksoy et al. (Contributed by AV, 5-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlk1ewlk | |- ( F ( Walks ` G ) P -> F e. ( G EdgWalks 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 2 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
| 3 | 1 | wlk1walk | |- ( F ( Walks ` G ) P -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 4 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 5 | 4 | simp1d | |- ( F ( Walks ` G ) P -> G e. _V ) |
| 6 | 1nn0 | |- 1 e. NN0 |
|
| 7 | nn0xnn0 | |- ( 1 e. NN0 -> 1 e. NN0* ) |
|
| 8 | 6 7 | mp1i | |- ( F ( Walks ` G ) P -> 1 e. NN0* ) |
| 9 | 1 | isewlk | |- ( ( G e. _V /\ 1 e. NN0* /\ F e. Word dom ( iEdg ` G ) ) -> ( F e. ( G EdgWalks 1 ) <-> ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) ) |
| 10 | 5 8 2 9 | syl3anc | |- ( F ( Walks ` G ) P -> ( F e. ( G EdgWalks 1 ) <-> ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) ) |
| 11 | 2 3 10 | mpbir2and | |- ( F ( Walks ` G ) P -> F e. ( G EdgWalks 1 ) ) |