This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashge1 | |- ( ( A e. V /\ A =/= (/) ) -> 1 <_ ( # ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( A e. V /\ A =/= (/) ) /\ A e. Fin ) -> A e. Fin ) |
|
| 2 | simplr | |- ( ( ( A e. V /\ A =/= (/) ) /\ A e. Fin ) -> A =/= (/) ) |
|
| 3 | hashnncl | |- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
|
| 4 | 3 | biimpar | |- ( ( A e. Fin /\ A =/= (/) ) -> ( # ` A ) e. NN ) |
| 5 | 1 2 4 | syl2anc | |- ( ( ( A e. V /\ A =/= (/) ) /\ A e. Fin ) -> ( # ` A ) e. NN ) |
| 6 | 5 | nnge1d | |- ( ( ( A e. V /\ A =/= (/) ) /\ A e. Fin ) -> 1 <_ ( # ` A ) ) |
| 7 | 1xr | |- 1 e. RR* |
|
| 8 | pnfge | |- ( 1 e. RR* -> 1 <_ +oo ) |
|
| 9 | 7 8 | ax-mp | |- 1 <_ +oo |
| 10 | hashinf | |- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
|
| 11 | 10 | adantlr | |- ( ( ( A e. V /\ A =/= (/) ) /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
| 12 | 9 11 | breqtrrid | |- ( ( ( A e. V /\ A =/= (/) ) /\ -. A e. Fin ) -> 1 <_ ( # ` A ) ) |
| 13 | 6 12 | pm2.61dan | |- ( ( A e. V /\ A =/= (/) ) -> 1 <_ ( # ` A ) ) |