This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climrec.1 | |- Z = ( ZZ>= ` M ) |
|
| climrec.2 | |- ( ph -> M e. ZZ ) |
||
| climrec.3 | |- ( ph -> G ~~> A ) |
||
| climrec.4 | |- ( ph -> A =/= 0 ) |
||
| climrec.5 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
||
| climrec.6 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( 1 / ( G ` k ) ) ) |
||
| climrec.7 | |- ( ph -> H e. W ) |
||
| Assertion | climrec | |- ( ph -> H ~~> ( 1 / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrec.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climrec.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climrec.3 | |- ( ph -> G ~~> A ) |
|
| 4 | climrec.4 | |- ( ph -> A =/= 0 ) |
|
| 5 | climrec.5 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
|
| 6 | climrec.6 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( 1 / ( G ` k ) ) ) |
|
| 7 | climrec.7 | |- ( ph -> H e. W ) |
|
| 8 | climcl | |- ( G ~~> A -> A e. CC ) |
|
| 9 | 3 8 | syl | |- ( ph -> A e. CC ) |
| 10 | 4 | neneqd | |- ( ph -> -. A = 0 ) |
| 11 | c0ex | |- 0 e. _V |
|
| 12 | 11 | elsn2 | |- ( A e. { 0 } <-> A = 0 ) |
| 13 | 10 12 | sylnibr | |- ( ph -> -. A e. { 0 } ) |
| 14 | 9 13 | eldifd | |- ( ph -> A e. ( CC \ { 0 } ) ) |
| 15 | eqidd | |- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) = ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ) |
|
| 16 | simpr | |- ( ( ( ph /\ z e. ( CC \ { 0 } ) ) /\ w = z ) -> w = z ) |
|
| 17 | 16 | oveq2d | |- ( ( ( ph /\ z e. ( CC \ { 0 } ) ) /\ w = z ) -> ( 1 / w ) = ( 1 / z ) ) |
| 18 | simpr | |- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> z e. ( CC \ { 0 } ) ) |
|
| 19 | 18 | eldifad | |- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> z e. CC ) |
| 20 | eldifsni | |- ( z e. ( CC \ { 0 } ) -> z =/= 0 ) |
|
| 21 | 20 | adantl | |- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> z =/= 0 ) |
| 22 | 19 21 | reccld | |- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> ( 1 / z ) e. CC ) |
| 23 | 15 17 18 22 | fvmptd | |- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) = ( 1 / z ) ) |
| 24 | 23 22 | eqeltrd | |- ( ( ph /\ z e. ( CC \ { 0 } ) ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) e. CC ) |
| 25 | eqid | |- ( if ( 1 <_ ( ( abs ` A ) x. x ) , 1 , ( ( abs ` A ) x. x ) ) x. ( ( abs ` A ) / 2 ) ) = ( if ( 1 <_ ( ( abs ` A ) x. x ) , 1 , ( ( abs ` A ) x. x ) ) x. ( ( abs ` A ) / 2 ) ) |
|
| 26 | 25 | reccn2 | |- ( ( A e. ( CC \ { 0 } ) /\ x e. RR+ ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) |
| 27 | 14 26 | sylan | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) |
| 28 | eqidd | |- ( z e. ( CC \ { 0 } ) -> ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) = ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ) |
|
| 29 | simpr | |- ( ( z e. ( CC \ { 0 } ) /\ w = z ) -> w = z ) |
|
| 30 | 29 | oveq2d | |- ( ( z e. ( CC \ { 0 } ) /\ w = z ) -> ( 1 / w ) = ( 1 / z ) ) |
| 31 | id | |- ( z e. ( CC \ { 0 } ) -> z e. ( CC \ { 0 } ) ) |
|
| 32 | eldifi | |- ( z e. ( CC \ { 0 } ) -> z e. CC ) |
|
| 33 | 32 20 | reccld | |- ( z e. ( CC \ { 0 } ) -> ( 1 / z ) e. CC ) |
| 34 | 28 30 31 33 | fvmptd | |- ( z e. ( CC \ { 0 } ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) = ( 1 / z ) ) |
| 35 | 34 | ad2antlr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) = ( 1 / z ) ) |
| 36 | eqidd | |- ( ph -> ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) = ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ) |
|
| 37 | simpr | |- ( ( ph /\ w = A ) -> w = A ) |
|
| 38 | 37 | oveq2d | |- ( ( ph /\ w = A ) -> ( 1 / w ) = ( 1 / A ) ) |
| 39 | 9 4 | reccld | |- ( ph -> ( 1 / A ) e. CC ) |
| 40 | 36 38 14 39 | fvmptd | |- ( ph -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) = ( 1 / A ) ) |
| 41 | 40 | ad4antr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) = ( 1 / A ) ) |
| 42 | 35 41 | oveq12d | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) = ( ( 1 / z ) - ( 1 / A ) ) ) |
| 43 | 42 | fveq2d | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) = ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) ) |
| 44 | 31 | ad2antlr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> z e. ( CC \ { 0 } ) ) |
| 45 | simpr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( z - A ) ) < y ) |
|
| 46 | simpllr | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) |
|
| 47 | 44 45 46 | mp2d | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) |
| 48 | 43 47 | eqbrtrd | |- ( ( ( ( ( ph /\ x e. RR+ ) /\ ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) ) /\ z e. ( CC \ { 0 } ) ) /\ ( abs ` ( z - A ) ) < y ) -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) |
| 49 | 48 | exp41 | |- ( ( ph /\ x e. RR+ ) -> ( ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) ) -> ( z e. ( CC \ { 0 } ) -> ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) ) ) ) |
| 50 | 49 | ralimdv2 | |- ( ( ph /\ x e. RR+ ) -> ( A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) -> A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) ) ) |
| 51 | 50 | reximdv | |- ( ( ph /\ x e. RR+ ) -> ( E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < x ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) ) ) |
| 52 | 27 51 | mpd | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` z ) - ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) ) < x ) ) |
| 53 | eqidd | |- ( ( ph /\ k e. Z ) -> ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) = ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ) |
|
| 54 | oveq2 | |- ( w = ( G ` k ) -> ( 1 / w ) = ( 1 / ( G ` k ) ) ) |
|
| 55 | 54 | adantl | |- ( ( ( ph /\ k e. Z ) /\ w = ( G ` k ) ) -> ( 1 / w ) = ( 1 / ( G ` k ) ) ) |
| 56 | 5 | eldifad | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 57 | eldifsni | |- ( ( G ` k ) e. ( CC \ { 0 } ) -> ( G ` k ) =/= 0 ) |
|
| 58 | 5 57 | syl | |- ( ( ph /\ k e. Z ) -> ( G ` k ) =/= 0 ) |
| 59 | 56 58 | reccld | |- ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) e. CC ) |
| 60 | 53 55 5 59 | fvmptd | |- ( ( ph /\ k e. Z ) -> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` ( G ` k ) ) = ( 1 / ( G ` k ) ) ) |
| 61 | 6 60 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` ( G ` k ) ) ) |
| 62 | 1 2 14 24 3 7 52 5 61 | climcn1 | |- ( ph -> H ~~> ( ( w e. ( CC \ { 0 } ) |-> ( 1 / w ) ) ` A ) ) |
| 63 | 62 40 | breqtrd | |- ( ph -> H ~~> ( 1 / A ) ) |