This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function for a simple graph. (Contributed by AV, 12-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
||
| vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxdusgrfvedg | |- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { e e. E | U e. e } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
|
| 3 | vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 6 | 1 4 5 3 | vtxdusgrval | |- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) ) |
| 7 | usgruspgr | |- ( G e. USGraph -> G e. USPGraph ) |
|
| 8 | uspgrushgr | |- ( G e. USPGraph -> G e. USHGraph ) |
|
| 9 | 7 8 | syl | |- ( G e. USGraph -> G e. USHGraph ) |
| 10 | 1 2 | vtxdushgrfvedglem | |- ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |
| 11 | 9 10 | sylan | |- ( ( G e. USGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |
| 12 | 6 11 | eqtrd | |- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { e e. E | U e. e } ) ) |