This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex in a hypergraph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
||
| vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxduhgr0edgnel | |- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
|
| 3 | vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | 1 4 3 | vtxd0nedgb | |- ( U e. V -> ( ( D ` U ) = 0 <-> -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 6 | 5 | adantl | |- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 7 | 4 2 | uhgrvtxedgiedgb | |- ( ( G e. UHGraph /\ U e. V ) -> ( E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) <-> E. e e. E U e. e ) ) |
| 8 | 7 | notbid | |- ( ( G e. UHGraph /\ U e. V ) -> ( -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) <-> -. E. e e. E U e. e ) ) |
| 9 | 6 8 | bitrd | |- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |