This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree function on finite simple graphs is a function from vertices to nonnegative integers. (Contributed by AV, 12-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vtxdgfusgrf.v | |- V = ( Vtx ` G ) |
|
| Assertion | vtxdgfusgrf | |- ( G e. FinUSGraph -> ( VtxDeg ` G ) : V --> NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgfusgrf.v | |- V = ( Vtx ` G ) |
|
| 2 | fusgrfis | |- ( G e. FinUSGraph -> ( Edg ` G ) e. Fin ) |
|
| 3 | fusgrusgr | |- ( G e. FinUSGraph -> G e. USGraph ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 6 | 4 5 | usgredgffibi | |- ( G e. USGraph -> ( ( Edg ` G ) e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 7 | 3 6 | syl | |- ( G e. FinUSGraph -> ( ( Edg ` G ) e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 8 | usgrfun | |- ( G e. USGraph -> Fun ( iEdg ` G ) ) |
|
| 9 | fundmfibi | |- ( Fun ( iEdg ` G ) -> ( ( iEdg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) |
|
| 10 | 3 8 9 | 3syl | |- ( G e. FinUSGraph -> ( ( iEdg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) |
| 11 | 7 10 | bitrd | |- ( G e. FinUSGraph -> ( ( Edg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) |
| 12 | 2 11 | mpbid | |- ( G e. FinUSGraph -> dom ( iEdg ` G ) e. Fin ) |
| 13 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 14 | 1 4 13 | vtxdgfisf | |- ( ( G e. FinUSGraph /\ dom ( iEdg ` G ) e. Fin ) -> ( VtxDeg ` G ) : V --> NN0 ) |
| 15 | 12 14 | mpdan | |- ( G e. FinUSGraph -> ( VtxDeg ` G ) : V --> NN0 ) |