This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex for graphs of finite size. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Jan-2018) (Revised by AV, 8-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgval.v | |- V = ( Vtx ` G ) |
|
| vtxdgval.i | |- I = ( iEdg ` G ) |
||
| vtxdgval.a | |- A = dom I |
||
| Assertion | vtxdgfival | |- ( ( A e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) + ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgval.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdgval.i | |- I = ( iEdg ` G ) |
|
| 3 | vtxdgval.a | |- A = dom I |
|
| 4 | 1 2 3 | vtxdgval | |- ( U e. V -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
| 5 | 4 | adantl | |- ( ( A e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
| 6 | rabfi | |- ( A e. Fin -> { x e. A | U e. ( I ` x ) } e. Fin ) |
|
| 7 | hashcl | |- ( { x e. A | U e. ( I ` x ) } e. Fin -> ( # ` { x e. A | U e. ( I ` x ) } ) e. NN0 ) |
|
| 8 | 6 7 | syl | |- ( A e. Fin -> ( # ` { x e. A | U e. ( I ` x ) } ) e. NN0 ) |
| 9 | 8 | nn0red | |- ( A e. Fin -> ( # ` { x e. A | U e. ( I ` x ) } ) e. RR ) |
| 10 | rabfi | |- ( A e. Fin -> { x e. A | ( I ` x ) = { U } } e. Fin ) |
|
| 11 | hashcl | |- ( { x e. A | ( I ` x ) = { U } } e. Fin -> ( # ` { x e. A | ( I ` x ) = { U } } ) e. NN0 ) |
|
| 12 | 10 11 | syl | |- ( A e. Fin -> ( # ` { x e. A | ( I ` x ) = { U } } ) e. NN0 ) |
| 13 | 12 | nn0red | |- ( A e. Fin -> ( # ` { x e. A | ( I ` x ) = { U } } ) e. RR ) |
| 14 | 9 13 | jca | |- ( A e. Fin -> ( ( # ` { x e. A | U e. ( I ` x ) } ) e. RR /\ ( # ` { x e. A | ( I ` x ) = { U } } ) e. RR ) ) |
| 15 | 14 | adantr | |- ( ( A e. Fin /\ U e. V ) -> ( ( # ` { x e. A | U e. ( I ` x ) } ) e. RR /\ ( # ` { x e. A | ( I ` x ) = { U } } ) e. RR ) ) |
| 16 | rexadd | |- ( ( ( # ` { x e. A | U e. ( I ` x ) } ) e. RR /\ ( # ` { x e. A | ( I ` x ) = { U } } ) e. RR ) -> ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) + ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( A e. Fin /\ U e. V ) -> ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) + ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
| 18 | 5 17 | eqtrd | |- ( ( A e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) + ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |