This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induction step for a vertex degree calculation. If the degree of U in the edge set E is P , then adding { X , Y } to the edge set, where X =/= U =/= Y , yields degree P as well. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vdegp1ai.vg | |- V = ( Vtx ` G ) |
|
| vdegp1ai.u | |- U e. V |
||
| vdegp1ai.i | |- I = ( iEdg ` G ) |
||
| vdegp1ai.w | |- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
||
| vdegp1ai.d | |- ( ( VtxDeg ` G ) ` U ) = P |
||
| vdegp1ai.vf | |- ( Vtx ` F ) = V |
||
| vdegp1ai.x | |- X e. V |
||
| vdegp1ai.xu | |- X =/= U |
||
| vdegp1ai.y | |- Y e. V |
||
| vdegp1ai.yu | |- Y =/= U |
||
| vdegp1ai.f | |- ( iEdg ` F ) = ( I ++ <" { X , Y } "> ) |
||
| Assertion | vdegp1ai | |- ( ( VtxDeg ` F ) ` U ) = P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdegp1ai.vg | |- V = ( Vtx ` G ) |
|
| 2 | vdegp1ai.u | |- U e. V |
|
| 3 | vdegp1ai.i | |- I = ( iEdg ` G ) |
|
| 4 | vdegp1ai.w | |- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
|
| 5 | vdegp1ai.d | |- ( ( VtxDeg ` G ) ` U ) = P |
|
| 6 | vdegp1ai.vf | |- ( Vtx ` F ) = V |
|
| 7 | vdegp1ai.x | |- X e. V |
|
| 8 | vdegp1ai.xu | |- X =/= U |
|
| 9 | vdegp1ai.y | |- Y e. V |
|
| 10 | vdegp1ai.yu | |- Y =/= U |
|
| 11 | vdegp1ai.f | |- ( iEdg ` F ) = ( I ++ <" { X , Y } "> ) |
|
| 12 | prex | |- { X , Y } e. _V |
|
| 13 | wrdf | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I : ( 0 ..^ ( # ` I ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 14 | 13 | ffund | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> Fun I ) |
| 15 | 4 14 | mp1i | |- ( { X , Y } e. _V -> Fun I ) |
| 16 | 6 | a1i | |- ( { X , Y } e. _V -> ( Vtx ` F ) = V ) |
| 17 | wrdv | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I e. Word _V ) |
|
| 18 | 4 17 | ax-mp | |- I e. Word _V |
| 19 | cats1un | |- ( ( I e. Word _V /\ { X , Y } e. _V ) -> ( I ++ <" { X , Y } "> ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
|
| 20 | 18 19 | mpan | |- ( { X , Y } e. _V -> ( I ++ <" { X , Y } "> ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
| 21 | 11 20 | eqtrid | |- ( { X , Y } e. _V -> ( iEdg ` F ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
| 22 | fvexd | |- ( { X , Y } e. _V -> ( # ` I ) e. _V ) |
|
| 23 | wrdlndm | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` I ) e/ dom I ) |
|
| 24 | 4 23 | mp1i | |- ( { X , Y } e. _V -> ( # ` I ) e/ dom I ) |
| 25 | 2 | a1i | |- ( { X , Y } e. _V -> U e. V ) |
| 26 | id | |- ( { X , Y } e. _V -> { X , Y } e. _V ) |
|
| 27 | 8 | necomi | |- U =/= X |
| 28 | 10 | necomi | |- U =/= Y |
| 29 | 27 28 | prneli | |- U e/ { X , Y } |
| 30 | 29 | a1i | |- ( { X , Y } e. _V -> U e/ { X , Y } ) |
| 31 | 1 3 15 16 21 22 24 25 26 30 | p1evtxdeq | |- ( { X , Y } e. _V -> ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) ) |
| 32 | 12 31 | ax-mp | |- ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) |
| 33 | 32 5 | eqtri | |- ( ( VtxDeg ` F ) ` U ) = P |